Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 9489, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676286

RESUMO

The population of the Endangered African penguin Spheniscus demersus has decreased by > 65% in the last 20 years. A major driver of this decrease has been the reduced availability of their principal prey, sardine Sardinops sagax and anchovy Engraulis encrasicolus. To date, conservation efforts to improve prey availability have focused on spatial management strategies to reduce resource competition with purse-seine fisheries during the breeding season. However, penguins also undergo an annual catastrophic moult when they are unable to feed for several weeks. Before moulting they must accumulate sufficient energy stores to survive this critical life-history stage. Using GPS tracking data collected between 2012 and 2019, we identify important foraging areas for pre- and post-moult African penguins at three of their major colonies in South Africa: Dassen Island and Stony Point (Western Cape) and Bird Island (Eastern Cape). The foraging ranges of pre- and post-moult adult African penguins (c. 600 km from colony) was far greater than that previously observed for breeding penguins (c. 50 km from colony) and varied considerably between sites, years and pre- and post-moult stages. Despite their more extensive range during the non-breeding season, waters within 20 and 50 km of their breeding colonies were used intensively and represent important foraging areas to pre- and post-moult penguins. Furthermore, penguins in the Western Cape travelled significantly further than those in the Eastern Cape which is likely a reflection of the poor prey availability along the west coast of South Africa. Our findings identify important marine areas for pre- and post-moult African penguins and support for the expansion of fisheries-related spatio-temporal management strategies to help conserve African penguins outside the breeding season.


Assuntos
Spheniscidae , Animais , Pesqueiros , Peixes , Muda , Estações do Ano
2.
Environ Pollut ; 241: 124-135, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29803026

RESUMO

Albatrosses (Diomedeidae) are iconic pelagic seabirds whose life-history traits (longevity, high trophic position) put them at risk of high levels of exposure to methylmercury (MeHg), a powerful neurotoxin that threatens humans and wildlife. Here, we report total Hg (THg) concentrations in body feathers from 516 individual albatrosses from 35 populations, including all 20 taxa breeding in the Southern Ocean. Our key finding is that albatrosses constitute the family of birds with the highest levels of contamination by Hg, with mean feather THg concentrations in different populations ranging from moderate (3.8 µg/g) to exceptionally high (34.6 µg/g). Phylogeny had a significant effect on feather THg concentrations, with the mean decreasing in the order Diomedea > Phoebetria > Thalassarche. Unexpectedly, moulting habitats (reflected in feather δ13C values) was the main driver of feather THg concentrations, indicating increasing MeHg exposure with decreasing latitude, from Antarctic to subtropical waters. The role of moulting habitat suggests that the majority of MeHg eliminated into feathers by albatrosses is from recent food intake (income strategy). They thus differ from species that depurate MeHg into feathers that has been accumulated in internal tissues between two successive moults (capital strategy). Since albatrosses are amongst the most threatened families of birds, it is noteworthy that two albatrosses listed as Critical by the World Conservation Union (IUCN) that moult and breed in temperate waters are the most Hg-contaminated species (the Amsterdam and Tristan albatrosses). These data emphasize the urgent need for robust assessment of the impact of Hg contamination on the biology of albatrosses and they document the high MeHg level exposure of wildlife living in the most remote marine areas on Earth.


Assuntos
Aves/metabolismo , Plumas/química , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Regiões Antárticas , Ecossistema , Monitoramento Ambiental , Plumas/metabolismo , Mercúrio/análise , Compostos de Metilmercúrio/análise , Estações do Ano , Poluentes Químicos da Água/análise
3.
Mol Ecol ; 24(12): 3122-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25903359

RESUMO

Analytical methods that apply coalescent theory to multilocus data have improved inferences of demographic parameters that are critical to understanding population divergence and speciation. In particular, at the early stages of speciation, it is important to implement models that accommodate conflicting gene trees, and benefit from the presence of shared polymorphisms. Here, we employ eleven nuclear loci and the mitochondrial control region to investigate the phylogeography and historical demography of the pelagic seabird White-faced Storm-petrel (Pelagodroma marina) by sampling subspecies across its antitropical distribution. Groups are all highly differentiated: global mitochondrial ΦST = 0.89 (P < 0.01) and global nuclear ΦST varies between 0.22 and 0.83 (all P < 0.01). The complete lineage sorting of the mitochondrial locus between hemispheres is corroborated by approximately half of the nuclear genealogies, suggesting a long-term antitropical divergence in isolation. Coalescent-based estimates of demographic parameters suggest that hemispheric divergence of P. marina occurred approximately 840 000 ya (95% HPD 582 000-1 170 000), in the absence of gene flow, and divergence within the Southern Hemisphere occurred 190 000 ya (95% HPD 96 000-600 000), both probably associated with the profound palaeo-oceanographic changes of the Pleistocene. A fledgling sampled in St Helena (tropical South Atlantic) suggests recent colonization from the Northern Hemisphere. Despite the great potential for long-distance dispersal, P. marina antitropical groups have been evolving as independent, allopatric lineages, and divergence is probably maintained by philopatry coupled with asynchronous reproductive phenology and local adaptation.


Assuntos
Aves/genética , Evolução Molecular , Variação Genética , Genética Populacional , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Dados de Sequência Molecular , Filogenia , Filogeografia , Análise de Sequência de DNA
4.
Biol Lett ; 3(3): 241-4, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17412667

RESUMO

The house mouse, Mus musculus, is one of the most widespread and well-studied invasive mammals on islands. It was thought to pose little risk to seabirds, but video evidence from Gough Island, South Atlantic Ocean shows house mice killing chicks of two IUCN-listed seabird species. Mouse-induced mortality in 2004 was a significant cause of extremely poor breeding success for Tristan albatrosses, Diomedea dabbenena (0.27 fledglings/pair), and Atlantic petrels, Pterodroma incerta (0.33). Population models show that these levels of predation are sufficient to cause population decreases. Unlike many other islands, mice are the only introduced mammals on Gough Island. However, restoration programmes to eradicate rats and other introduced mammals from islands are increasing the number of islands where mice are the sole alien mammals. If these mouse populations are released from the ecological effects of predators and competitors, they too may become predatory on seabird chicks.


Assuntos
Aves/fisiologia , Conservação dos Recursos Naturais/métodos , Extinção Biológica , Camundongos/fisiologia , Modelos Teóricos , Comportamento Predatório/fisiologia , Animais , Ilhas Atlânticas , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA