Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 382(6677): 1348-1355, 2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38127744

RESUMO

In late December 1973, the United States enacted what some would come to call "the pitbull of environmental laws." In the 50 years since, the formidable regulatory teeth of the Endangered Species Act (ESA) have been credited with considerable successes, obliging agencies to draw upon the best available science to protect species and habitats. Yet human pressures continue to push the planet toward extinctions on a massive scale. With that prospect looming, and with scientific understanding ever changing, Science invited experts to discuss how the ESA has evolved and what its future might hold. -Brad Wible.

2.
Sci Adv ; 9(45): eadi4123, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948522

RESUMO

The increasing frequency of severe wildfires demands a shift in landscape management to mitigate their consequences. The role of managed, low-intensity fire as a driver of beneficial fuel treatment in fire-adapted ecosystems has drawn interest in both scientific and policy venues. Using a synthetic control approach to analyze 20 years of satellite-based fire activity data across 124,186 square kilometers of forests in California, we provide evidence that low-intensity fires substantially reduce the risk of future high-intensity fires. In conifer forests, the risk of high-intensity fire is reduced by 64.0% [95% confidence interval (CI): 41.2 to 77.9%] in areas recently burned at low intensity relative to comparable unburned areas, and protective effects last for at least 6 years (lower bound of one-sided 95% CI: 6 years). These findings support a policy transition from fire suppression to restoration, through increased use of prescribed fire, cultural burning, and managed wildfire, of a presuppression and precolonial fire regime in California.


Assuntos
Incêndios , Incêndios Florestais , Ecossistema , Florestas , California
3.
Nature ; 622(7984): 761-766, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730996

RESUMO

Steady improvements in ambient air quality in the USA over the past several decades, in part a result of public policy1,2, have led to public health benefits1-4. However, recent trends in ambient concentrations of particulate matter with diameters less than 2.5 µm (PM2.5), a pollutant regulated under the Clean Air Act1, have stagnated or begun to reverse throughout much of the USA5. Here we use a combination of ground- and satellite-based air pollution data from 2000 to 2022 to quantify the contribution of wildfire smoke to these PM2.5 trends. We find that since at least 2016, wildfire smoke has influenced trends in average annual PM2.5 concentrations in nearly three-quarters of states in the contiguous USA, eroding about 25% of previous multi-decadal progress in reducing PM2.5 concentrations on average in those states, equivalent to 4 years of air quality progress, and more than 50% in many western states. Smoke influence on trends in the number of days with extreme PM2.5 concentrations is detectable by 2011, but the influence can be detected primarily in western and mid-western states. Wildfire-driven increases in ambient PM2.5 concentrations are unregulated under current air pollution law6 and, in the absence of further interventions, we show that the contribution of wildfire to regional and national air quality trends is likely to grow as the climate continues to warm.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Material Particulado , Incêndios Florestais , Humanos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Poluição do Ar/análise , Poluição do Ar/legislação & jurisprudência , Poluição do Ar/estatística & dados numéricos , Aquecimento Global/estatística & dados numéricos , Material Particulado/análise , Material Particulado/química , Fumaça/análise , Estados Unidos , Incêndios Florestais/estatística & dados numéricos , Política Ambiental/legislação & jurisprudência , Política Ambiental/tendências
4.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33431571

RESUMO

Recent dramatic and deadly increases in global wildfire activity have increased attention on the causes of wildfires, their consequences, and how risk from wildfire might be mitigated. Here we bring together data on the changing risk and societal burden of wildfire in the United States. We estimate that nearly 50 million homes are currently in the wildland-urban interface in the United States, a number increasing by 1 million houses every 3 y. To illustrate how changes in wildfire activity might affect air pollution and related health outcomes, and how these linkages might guide future science and policy, we develop a statistical model that relates satellite-based fire and smoke data to information from pollution monitoring stations. Using the model, we estimate that wildfires have accounted for up to 25% of PM2.5 (particulate matter with diameter <2.5 µm) in recent years across the United States, and up to half in some Western regions, with spatial patterns in ambient smoke exposure that do not follow traditional socioeconomic pollution exposure gradients. We combine the model with stylized scenarios to show that fuel management interventions could have large health benefits and that future health impacts from climate-change-induced wildfire smoke could approach projected overall increases in temperature-related mortality from climate change-but that both estimates remain uncertain. We use model results to highlight important areas for future research and to draw lessons for policy.


Assuntos
Incêndios Florestais/prevenção & controle , Incêndios Florestais/estatística & dados numéricos , Poluição do Ar/análise , Mudança Climática , Exposição Ambiental , Poluição Ambiental , Incêndios , Humanos , Modelos Estatísticos , Material Particulado/análise , Fatores de Risco , Fumaça/análise , Estados Unidos
6.
Science ; 344(6191): 1460, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24970071
7.
Nature ; 486(7401): 97-100, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22678287

RESUMO

Deep-time palaeoclimate studies are vitally important for developing a complete understanding of climate responses to changes in the atmospheric carbon dioxide concentration (that is, the atmospheric partial pressure of CO(2), p(co(2))). Although past studies have explored these responses during portions of the Cenozoic era (the most recent 65.5 million years (Myr) of Earth history), comparatively little is known about the climate of the late Miocene (∼12-5 Myr ago), an interval with p(co(2)) values of only 200-350 parts per million by volume but nearly ice-free conditions in the Northern Hemisphere and warmer-than-modern temperatures on the continents. Here we present quantitative geochemical sea surface temperature estimates from the Miocene mid-latitude North Pacific Ocean, and show that oceanic warmth persisted throughout the interval of low p(co(2)) ∼12-5 Myr ago. We also present new stable isotope measurements from the western equatorial Pacific that, in conjunction with previously published data, reveal a long-term trend of thermocline shoaling in the equatorial Pacific since ∼13 Myr ago. We propose that a relatively deep global thermocline, reductions in low-latitude gradients in sea surface temperature, and cloud and water vapour feedbacks may help to explain the warmth of the late Miocene. Additional shoaling of the thermocline after 5 Myr ago probably explains the stronger coupling between p(co(2)), sea surface temperatures and climate that is characteristic of the more recent Pliocene and Pleistocene epochs.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Aquecimento Global/história , Temperatura Alta , Água do Mar , Dióxido de Carbono/química , Foraminíferos/química , Sedimentos Geológicos/química , Aquecimento Global/estatística & dados numéricos , História Antiga , Oceanos e Mares , Isótopos de Oxigênio/análise , Água do Mar/análise , Água do Mar/química , Vento
8.
Nature ; 445(7128): 595-6, 2007 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-17287794
9.
Science ; 309(5735): 758-61, 2005 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-15976271

RESUMO

During the warm early Pliocene (approximately 4.5 to 3.0 million years ago), the most recent interval with a climate warmer than today, the eastern Pacific thermocline was deep and the average west-to-east sea surface temperature difference across the equatorial Pacific was only 1.5 +/- 0.9 degrees C, much like it is during a modern El Niño event. Thus, the modern strong sea surface temperature gradient across the equatorial Pacific is not a stable and permanent feature. Sustained El Niño-like conditions, including relatively weak zonal atmospheric (Walker) circulation, could be a consequence of, and play an important role in determining, global warmth.

10.
Nature ; 429(6989): 263-7, 2004 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-15152244

RESUMO

The Earth's climate has undergone a global transition over the past four million years, from warm conditions with global surface temperatures about 3 degrees C warmer than today, smaller ice sheets and higher sea levels to the current cooler conditions. Tectonic changes and their influence on ocean heat transport have been suggested as forcing factors for that transition, including the onset of significant Northern Hemisphere glaciation approximately 2.75 million years ago, but the ultimate causes for the climatic changes are still under debate. Here we compare climate records from high latitudes, subtropical regions and the tropics, indicating that the onset of large glacial/interglacial cycles did not coincide with a specific climate reorganization event at lower latitudes. The regional differences in the timing of cooling imply that global cooling was a gradual process, rather than the response to a single threshold or episodic event as previously suggested. We also find that high-latitude climate sensitivity to variations in solar heating increased gradually, culminating after cool tropical and subtropical upwelling conditions were established two million years ago. Our results suggest that mean low-latitude climate conditions can significantly influence global climate feedbacks.


Assuntos
Clima , Temperatura Baixa , Clima Tropical , Animais , Carbonato de Cálcio/análise , Sedimentos Geológicos/química , Temperatura Alta , Gelo , Isótopos de Oxigênio , Oceano Pacífico , Água do Mar/análise , Fatores de Tempo
11.
Science ; 302(5650): 1551-4, 2003 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-14576441

RESUMO

The Paleocene-Eocene Thermal Maximum (PETM) has been attributed to a rapid rise in greenhouse gas levels. If so, warming should have occurred at all latitudes, although amplified toward the poles. Existing records reveal an increase in high-latitude sea surface temperatures (SSTs) (8 degrees to 10 degrees C) and in bottom water temperatures (4 degrees to 5 degrees C). To date, however, the character of the tropical SST response during this event remains unconstrained. Here we address this deficiency by using paired oxygen isotope and minor element (magnesium/calcium) ratios of planktonic foraminifera from a tropical Pacific core to estimate changes in SST. Using mixed-layer foraminifera, we found that the combined proxies imply a 4 degrees to 5 degrees C rise in Pacific SST during the PETM. These results would necessitate a rise in atmospheric pCO2 to levels three to four times as high as those estimated for the late Paleocene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA