Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biorheology ; 56(1): 15-30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30714948

RESUMO

BACKGROUND: Mesenchymal stem cells (MSC) are used in therapy, often by injection into the blood. OBJECTIVE: We aimed to compare the adhesive and migratory properties of MSC from umbilical cords (UCMSC), bone marrow (BMMSC) or trabecular bone (TBMSC), which might influence delivery to injured tissue. METHODS: MSC were perfused through glass capillaries coated with matrix proteins, collagen or fibronectin, or albumin. Adherent cells were counted microscopically and their spreading analysed over time. MSC migration through 8 µm pore filters coated with the same proteins was analysed. RESULTS: The number of MSC adhering to collagen was greater than fibronectin, decreased as wall shear rate increased from 17 to 70 s-1, and was in the order UCMSC>BMMSC>TBMSC. Conversely, spreading was more effective on fibronectin and was in the order BMMSC>TBMSC≥UCMSC. Migration was promoted by coating the lower surface of filters with either matrix protein, with UCMSC migrating more efficiently than BMMSC. CONCLUSIONS: MSC show origin-dependent variations in their efficiency of capture from flow and subsequent spreading or ability to migrate on matrix proteins. UCMSC showed most efficient capture from flow, which was followed by less spreading, but more rapid migration. These responses might be associated with more effective delivery from the circulation into damaged tissue.


Assuntos
Adesão Celular , Movimento Celular , Células-Tronco Mesenquimais/citologia , Fenômenos Biomecânicos , Células da Medula Óssea/citologia , Osso Esponjoso/citologia , Tamanho Celular , Proteínas da Matriz Extracelular/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Especificidade de Órgãos , Resistência ao Cisalhamento , Cordão Umbilical/citologia
2.
J Cell Sci ; 132(5)2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30745334

RESUMO

Mesenchymal stromal cells (MSCs) upregulate podoplanin at sites of infection, chronic inflammation and cancer. Here, we investigated the functional consequences of podoplanin expression on the migratory potential of MSCs and their interactions with circulating platelets. Expression of podoplanin significantly enhanced the migration of MSCs compared to MSCs lacking podoplanin. Rac-1 inhibition altered the membrane localisation of podoplanin and in turn significantly reduced MSC migration. Blocking Rac-1 activity had no effect on the migration of MSCs lacking podoplanin, indicating that it was responsible for regulation of migration through podoplanin. When podoplanin-expressing MSCs were seeded on the basal surface of a porous filter, they were able to capture platelets perfused over the uncoated apical surface and induce platelet aggregation. Similar microthrombi were observed when endothelial cells (ECs) were co-cultured on the apical surface. Confocal imaging shows podoplanin-expressing MSCs extending processes into the EC layer, and these processes could interact with circulating platelets. In both models, platelet aggregation induced by podoplanin-expressing MSCs was inhibited by treatment with recombinant soluble C-type lectin-like receptor 2 (CLEC-2; encoded by the gene Clec1b). Thus, podoplanin may enhance the migratory capacity of tissue-resident MSCs and enable novel interactions with cells expressing CLEC-2.


Assuntos
Plaquetas/fisiologia , Endotélio Vascular/fisiologia , Glicoproteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Trombose/metabolismo , Movimento Celular , Células Cultivadas , Endotélio Vascular/patologia , Humanos , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/genética , Microscopia Confocal , Comunicação Parácrina , Agregação Plaquetária , RNA Interferente Pequeno/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
3.
Adv Exp Med Biol ; 1060: 73-98, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30155623

RESUMO

This chapter discusses the regulatory role of endogenous mesenchymal stem cells (MSC) during an inflammatory response. MSC are a heterogeneous population of multipotent cells that normally contribute towards tissue maintenance and repair but have garnered significant scientific interest for their potent immunomodulatory potential. It is through these physicochemical interactions that MSC are able to exert an anti-inflammatory response on neighbouring stromal and haematopoietic cells. However, the impact of the chronic inflammatory environment on MSC function remains to be determined. Understanding the relationship of MSC between resolution of inflammation and autoimmunity will both offer new insights in the use of MSC as a therapeutic, and also their involvement in the pathogenesis of inflammatory disorders.


Assuntos
Células-Tronco Mesenquimais/citologia , Animais , Plaquetas/citologia , Células da Medula Óssea/citologia , Microambiente Celular , Humanos , Imunomodulação , Inflamação/imunologia , Inflamação/terapia , Células-Tronco Mesenquimais/imunologia
4.
Stem Cells ; 36(7): 1062-1074, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29488279

RESUMO

We investigated the adhesive behavior of mesenchymal stem cells (MSC) in blood, which might influence their fate when infused as therapy. Isolated human bone marrow MSC (BMMSC) or umbilical cord MSC (UCMSC) adhered efficiently from flow to the matrix proteins, collagen, or fibronectin, but did not adhere to endothelial selectins. However, when suspended in blood, BMMSC no longer adhered to collagen, while UCMSC adhered along with many aggregated platelets. Neither MSC adhered to fibronectin from flowing blood, although the fibronectin surface did become coated with a platelet monolayer. UCMSC induced platelet aggregation in platelet rich plasma, and caused a marked drop in platelet count when mixed with whole human or mouse blood in vitro, or when infused into mice. In contrast, BMMSC did not activate platelets or induce changes in platelet count. Interestingly, isolated UCMSC and BMMSC both adhered to predeposited platelets. The differences in behavior in blood were attributable to expression of podoplanin (an activating ligand for the platelet receptor CLEC-2), which was detected on UCMSC, but not BMMSC. Thus, platelets were activated when bound to UCMSC, but not BMMSC. Platelet aggregation by UCMSC was inhibited by recombinant soluble CLEC-2, and UCMSC did not cause a reduction in platelet count when mixed with blood from mice deficient in CLEC-2. We predict that both MSC would carry platelets in the blood, but their interaction with vascular endothelium would depend on podoplanin-induced activation of the bound platelets. Such interactions with platelets might target MSC to damaged tissue, but could also be thrombotic. Stem Cells 2018;36:1062-1074.


Assuntos
Plaquetas/metabolismo , Adesão Celular/genética , Células-Tronco Mesenquimais/metabolismo , Animais , Humanos , Camundongos
5.
Ann Rheum Dis ; 76(12): 2105-2112, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28847766

RESUMO

OBJECTIVES: Synovial fibroblasts actively regulate the inflammatory infiltrate by communicating with neighbouring endothelial cells (EC). Surprisingly, little is known about how the development of rheumatoid arthritis (RA) alters these immunomodulatory properties. We examined the effects of phase of RA and disease outcome (resolving vs persistence) on fibroblast crosstalk with EC and regulation of lymphocyte recruitment. METHODS: Fibroblasts were isolated from patients without synovitis, with resolving arthritis, very early RA (VeRA; symptom ≤12 weeks) and established RA undergoing joint replacement (JRep) surgery. Endothelial-fibroblast cocultures were formed on opposite sides of porous filters. Lymphocyte adhesion from flow, secretion of soluble mediators and interleukin 6 (IL-6) signalling were assessed. RESULTS: Fibroblasts from non-inflamed and resolving arthritis were immunosuppressive, inhibiting lymphocyte recruitment to cytokine-treated endothelium. This effect was lost very early in the development of RA, such that fibroblasts no longer suppressed recruitment. Changes in IL-6 and transforming growth factor beta 1 (TGF-ß1) signalling appeared critical for the loss of the immunosuppressive phenotype. In the absence of exogenous cytokines, JRep, but not VeRA, fibroblasts activated endothelium to support lymphocyte. CONCLUSIONS: In RA, fibroblasts undergo two distinct changes in function: first a loss of immunosuppressive responses early in disease development, followed by the later acquisition of a stimulatory phenotype. Fibroblasts exhibit a transitional functional phenotype during the first 3 months of symptoms that contributes to the accumulation of persistent infiltrates. Finally, the role of IL-6 and TGF-ß1 changes from immunosuppressive in resolving arthritis to stimulatory very early in the development of RA. Early interventions targeting 'pathogenic' fibroblasts may be required in order to restore protective regulatory processes.


Assuntos
Artrite Reumatoide/fisiopatologia , Células Epiteliais/fisiologia , Fibroblastos/fisiologia , Membrana Sinovial/citologia , Adulto , Técnicas de Cocultura , Citocinas/metabolismo , Feminino , Humanos , Interleucina-6/metabolismo , Linfócitos/fisiologia , Masculino , Pessoa de Meia-Idade , Fator de Crescimento Transformador beta1/metabolismo
6.
Stem Cells ; 35(6): 1636-1646, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28376564

RESUMO

Chronic inflammation is associated with formation of ectopic fat deposits that might represent damage-induced aberrant mesenchymal stem cell (MSC) differentiation. Such deposits are associated with increased levels of inflammatory infiltrate and poor prognosis. Here we tested the hypothesis that differentiation from MSC to adipocytes in inflamed tissue might contribute to chronicity through loss of immunomodulatory function. We assessed the effects of adipogenic differentiation of MSC isolated from bone marrow or adipose tissue on their capacity to regulate neutrophil recruitment by endothelial cells and compared the differentiated cells to primary adipocytes from adipose tissue. Bone marrow derived MSC were immunosuppressive, inhibiting neutrophil recruitment to TNFα-treated endothelial cells (EC), but MSC-derived adipocytes were no longer able to suppress neutrophil adhesion. Changes in IL-6 and TGFß1 signalling appeared critical for the loss of the immunosuppressive phenotype. In contrast, native stromal cells, adipocytes derived from them, and mature adipocytes from adipose tissue were all immunoprotective. Thus disruption of normal tissue stroma homeostasis, as occurs in chronic inflammatory diseases, might drive "abnormal" adipogenesis which adversely influences the behavior of MSC and contributes to pathogenic recruitment of leukocytes. Interestingly, stromal cells programmed in native fat tissue retain an immunoprotective phenotype. Stem Cells 2017;35:1636-1646.


Assuntos
Adipogenia , Imunomodulação , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Especificidade de Órgãos , Adipócitos/citologia , Técnicas de Cocultura , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Terapia de Imunossupressão , Interleucina-6/metabolismo , Leucócitos/citologia , Proteoma/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo
7.
Methods Mol Biol ; 1591: 121-142, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28349479

RESUMO

Methods are described for analyzing adhesion and migration of isolated lymphocytes on endothelial cell monolayers which have been cocultured with different mesenchymal stromal cells, with or without additional cytokine treatment. The different cells types are grown on opposite sides of 3.0 or 0.4 µm pore filters, depending on whether migration through the whole construct is to be analyzed, or adhesion to the endothelial cells alone. Migration away from the sub-endothelial space and through the stromal layer can also be assessed by culturing mesenchymal stromal cells within a 3-D collagen gel overlaid with endothelial cells. Assays may be "static" or the filter-based constructs can be incorporated into flow chambers so that cell behavior can be directly observed under conditions simulating those in vivo. In general, by choice of method, one can evaluate efficiency of attachment, and ability of cells to migrate across the endothelial monolayer, through the filter and through the stromal cell layer in 2-D or 3-D. Fluorescence microscopic examination of fixed filters can be used, e.g., to ascertain whether lymphocytes are retained by stromal cells. In general, static assays have the higher throughput and greatest ease of use, while the flow-based assays are more physiologically relevant and allow detailed recording of cell behavior in real time.


Assuntos
Células Endoteliais/fisiologia , Endotélio Vascular/fisiologia , Linfócitos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Colágeno/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Humanos , Linfócitos/metabolismo , Células-Tronco Mesenquimais/metabolismo
8.
J Immunol ; 198(7): 2834-2843, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28193827

RESUMO

Two major monocyte subsets, CD14+CD16- (classical) and CD14+/dimCD16+ (nonclassical/intermediate), have been described. Each has different functions ascribed in its interactions with vascular endothelial cells (EC), including migration and promoting inflammation. Although monocyte subpopulations have been studied in isolated systems, their influence on EC and on the course of inflammation has been ignored. In this study, using unstimulated or cytokine-activated EC, we observed significant differences in the recruitment, migration, and reverse migration of human monocyte subsets. Associated with this, and based on their patterns of cytokine secretion, there was a difference in their capacity to activate EC and support the secondary recruitment of flowing neutrophils. High levels of TNF were detected in cocultures with nonclassical/intermediate monocytes, the blockade of which significantly reduced neutrophil recruitment. In contrast, classical monocytes secreted high levels of IL-6, the blockade of which resulted in increased neutrophil recruitment. When cocultures contained both monocyte subsets, or when conditioned supernatant from classical monocytes cocultures (IL-6hi) was added to nonclassical/intermediate monocyte cocultures (TNFhi), the activating effects of TNF were dramatically reduced, implying that when present, the anti-inflammatory activities of IL-6 were dominant over the proinflammatory activities of TNF. These changes in neutrophil recruitment could be explained by regulation of E-selectin on the cocultured EC. This study suggests that recruited human monocyte subsets trigger a regulatory pathway of cytokine-mediated signaling at the EC interface, and we propose that this is a mechanism for limiting the phlogistic activity of newly recruited monocytes.


Assuntos
Quimiotaxia de Leucócito/imunologia , Células Endoteliais/imunologia , Inflamação/imunologia , Monócitos/imunologia , Transdução de Sinais/imunologia , Separação Celular , Citometria de Fluxo , Humanos , Interleucina-6/imunologia , Reação em Cadeia da Polimerase , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA