Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
2.
Sci Data ; 10(1): 822, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001085

RESUMO

Transferable and mechanistic understanding of cross-scale interactions is necessary to predict how coastal systems respond to global change. Cohesive datasets across geographically distributed sites can be used to examine how transferable a mechanistic understanding of coastal ecosystem control points is. To address the above research objectives, data were collected by the EXploration of Coastal Hydrobiogeochemistry Across a Network of Gradients and Experiments (EXCHANGE) Consortium - a regionally distributed network of researchers that collaborated on experimental design, methodology, collection, analysis, and publication. The EXCHANGE Consortium collected samples from 52 coastal terrestrial-aquatic interfaces (TAIs) during Fall of 2021. At each TAI, samples collected include soils from across a transverse elevation gradient (i.e., coastal upland forest, transitional forest, and wetland soils), surface waters, and nearshore sediments across research sites in the Great Lakes and Mid-Atlantic regions (Chesapeake and Delaware Bays) of the continental USA. The first campaign measures surface water quality parameters, bulk geochemical parameters on water, soil, and sediment samples, and physicochemical parameters of sediment and soil.

3.
New Phytol ; 235(5): 1767-1779, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35644021

RESUMO

Increasing seawater exposure is killing coastal trees globally, with expectations of accelerating mortality with rising sea levels. However, the impact of concomitant changes in atmospheric CO2 concentration, temperature, and vapor pressure deficit (VPD) on seawater-induced tree mortality is uncertain. We examined the mechanisms of seawater-induced mortality under varying climate scenarios using a photosynthetic gain and hydraulic cost optimization model validated against observations in a mature stand of Sitka spruce (Picea sitchensis) trees in the Pacific Northwest, USA, that were dying from recent seawater exposure. The simulations matched well with observations of photosynthesis, transpiration, nonstructural carbohydrates concentrations, leaf water potential, the percentage loss of xylem conductivity, and stand-level mortality rates. The simulations suggest that seawater-induced mortality could decrease by c. 16.7% with increasing atmospheric CO2 levels due to reduced risk of carbon starvation. Conversely, rising VPD could increase mortality by c. 5.6% because of increasing risk of hydraulic failure. Across all scenarios, seawater-induced mortality was driven by hydraulic failure in the first 2 yr after seawater exposure began, with carbon starvation becoming more important in subsequent years. Changing CO2 and climate appear unlikely to have a significant impact on coastal tree mortality under rising sea levels.


Assuntos
Picea , Árvores , Carbono , Dióxido de Carbono/farmacologia , Água do Mar , Temperatura , Pressão de Vapor , Água
4.
Glob Chang Biol ; 28(20): 5881-5900, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35689431

RESUMO

Observations of woody plant mortality in coastal ecosystems are globally widespread, but the overarching processes and underlying mechanisms are poorly understood. This knowledge deficiency, combined with rapidly changing water levels, storm surges, atmospheric CO2 , and vapor pressure deficit, creates large predictive uncertainty regarding how coastal ecosystems will respond to global change. Here, we synthesize the literature on the mechanisms that underlie coastal woody-plant mortality, with the goal of producing a testable hypothesis framework. The key emergent mechanisms underlying mortality include hypoxic, osmotic, and ionic-driven reductions in whole-plant hydraulic conductance and photosynthesis that ultimately drive the coupled processes of hydraulic failure and carbon starvation. The relative importance of these processes in driving mortality, their order of progression, and their degree of coupling depends on the characteristics of the anomalous water exposure, on topographic effects, and on taxa-specific variation in traits and trait acclimation. Greater inundation exposure could accelerate mortality globally; however, the interaction of changing inundation exposure with elevated CO2 , drought, and rising vapor pressure deficit could influence mortality likelihood. Models of coastal forests that incorporate the frequency and duration of inundation, the role of climatic drivers, and the processes of hydraulic failure and carbon starvation can yield improved estimates of inundation-induced woody-plant mortality.


Assuntos
Dióxido de Carbono , Ecossistema , Carbono , Secas , Árvores , Água
5.
JVS Vasc Sci ; 2: 194-206, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34761239

RESUMO

OBJECTIVE: The angiotensin II type 1 receptor (AT1R) can be activated under conditions of mechanical stretch in some cellular systems. Whether this activity influences signaling within the abdominal aorta to promote to abdominal aortic aneurysm (AAA) development remains unknown. We evaluated the hypothesis that mechanical AT1R activation can occur under conditions of hypertension (HTN) and contribute to AAA formation. METHODS: BPH/2 mice, which demonstrate spontaneous neurogenic, low-renin HTN, and normotensive BPN/3 mice underwent AAA induction via the calcium chloride model, with or without an osmotic minipump delivering 30 mg/kg/d of the AT1R blocker Losartan. Systolic blood pressure (SBP) was measured at baseline and weekly via a tail cuff. The aortic diameter (AoD) was measured at baseline and terminal surgery at 21 days by digital microscopy. Aortic tissue was harvested for immunoblotting (phosphorylated extracellular signal-regulated kinase-1 and -2 [pERK1/2] to ERK1/2 ratio) and expressed as the fold-change from the BPN/3 control mice. Aortic vascular smooth muscle cells (VSMCs) underwent stretch with or without Losartan (1 µM) treatment to assess the mechanical stimulation of ERK1/2 activity. Statistical analysis of the blood pressure, AoD, and VSMC ERK1/2 activity was performed using analysis of variance. However, the data distribution was determined to be log-normal (Shapiro-Wilk test) for ERK1/2 activity. Therefore, it was logarithmically transformed before analysis of variance. RESULTS: At baseline, the SBP was elevated in the BPH/2 mice relative to the BPN/3 mice (P < .05). Losartan treatment significantly reduced the SBP in both mouse strains (P < .05). AAA induction did not affect the SBP. At 21 days after induction, the percentage of increase in the AoD from baseline was significantly greater in the BPH/2 mice than in the BPN/3 mice (101.28% ± 4.19% vs 75.59% ± 1.67% above baseline; P < .05). Losartan treatment significantly attenuated AAA growth in both BPH/2 and BPN/3 mice (33.88% ± 2.97% and 43.96% ± 3.05% above baseline, respectively; P < .05). ERK1/2 activity was increased approximately fivefold in the BPH/2 control mice relative to the BPN/3 control mice (P < .05). In the BPH/2 and BPN/3 mice with AAA, ERK1/2 activity was significantly increased relative to the respective baseline control (P < .05) and effectively reduced by concomitant Losartan therapy (P < .05). Biaxial stretch of the VSMCs in the absence of angiotensin II demonstrated increased ERK1/2 activation (P < .05 vs static control), which was significantly inhibited by Losartan. CONCLUSIONS: In BPH/2 mice with spontaneous neurogenic, low-renin HTN, AAA growth was amplified compared with the normotensive control and was effectively attenuated using Losartan. ERK1/2 activity was significantly elevated in the BPH/2 mice and after AAA induction in the normotensive and hypertensive mice but was attenuated by Losartan treatment. These data suggest that AT1R activation contributes to AAA development. Therefore, further investigation into this signaling pathway could establish targets for pharmacotherapeutic engineering to slow AAA growth. (JVS-Vascular Science 2021;2:194-206.). CLINICAL RELEVANCE: Hypertension (HTN) and abdominal aortic aneurysm (AAA) have been epidemiologically linked for decades; however, a biomechanical link has not yet been identified. Using a murine model of spontaneous neurogenic HTN experimentally demonstrated to have low circulating renin, mechanical activation of the angiotensin II type 1 receptor (AT1R) was identified with elevated blood pressure and AAA induction. HTN amplified AAA growth. However, more importantly, blocking the activation of AT1R with the angiotensin receptor blocker Losartan effectively abrogated AAA development. Although inhibiting the production of angiotensin II has previously been unsuccessful in altering AAA growth, the results from the present study suggest that blocking the activation of AT1R through direct ligand binding or mechanical stimulation might alter aortic wall signaling and warrants further investigation.

6.
Plant Physiol ; 187(2): 873-885, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34608959

RESUMO

Sea-level rise is one of the most critical challenges facing coastal ecosystems under climate change. Observations of elevated tree mortality in global coastal forests are increasing, but important knowledge gaps persist concerning the mechanism of salinity stress-induced nonhalophytic tree mortality. We monitored progressive mortality and associated gas exchange and hydraulic shifts in Sitka-spruce (Picea sitchensis) trees located within a salinity gradient under an ecosystem-scale change of seawater exposure in Washington State, USA. Percentage of live foliated crown (PLFC) decreased and tree mortality increased with increasing soil salinity during the study period. A strong reduction in gas exchange and xylem hydraulic conductivity (Ks) occurred during tree death, with an increase in the percentage loss of conductivity (PLC) and turgor loss point (πtlp). Hydraulic and osmotic shifts reflected that hydraulic function declined from seawater exposure, and dying trees were unable to support osmotic adjustment. Constrained gas exchange was strongly related to hydraulic damage at both stem and leaf levels. Significant correlations between foliar sodium (Na+) concentration and gas exchange and key hydraulic parameters (Ks, PLC, and πtlp) suggest that cellular injury related to the toxic effects of ion accumulation impacted the physiology of these dying trees. This study provides evidence of toxic effects on the cellular function that manifests in all aspects of plant functioning, leading to unfavourable osmotic and hydraulic conditions.


Assuntos
Mudança Climática , Picea/fisiologia , Estresse Salino , Água do Mar/efeitos adversos , Árvores/fisiologia , Xilema/efeitos dos fármacos , Washington , Xilema/fisiologia
7.
Tree Physiol ; 41(12): 2326-2340, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34014270

RESUMO

Increasing seawater exposure is causing mortality of coastal forests, yet the physiological response associated with seawater-induced tree mortality, particularly in non-halophytes, is poorly understood. We investigated the shifts in carbon and nitrogen (N) metabolism of mature Sitka-spruce trees that were dying after an ecosystem-scale manipulation of tidal seawater exposure. Soil porewater salinity and foliar ion concentrations increased after seawater exposure and were strongly correlated with the percentage of live foliated crown (PLFC; e.g., crown 'greenness', a measure of progression to death). Co-occurring with decreasing PLFC was decreasing photosynthetic capacity, N-investment into photosynthesis, N-resorption efficiency and non-structural carbohydrate (soluble sugars and starch) concentrations, with the starch reserves depleted to near zero when PLFC dropped below 5%. Combined with declining PLFC, these changes subsequently decreased total carbon gain and thus exacerbated the carbon starvation process. This study suggests that an impairment in carbon and N metabolism during the mortality process after seawater exposure is associated with the process of carbon starvation, and provides critical knowledge necessary to predict sea-level rise impacts on coastal forests.


Assuntos
Picea , Carbono/metabolismo , Ecossistema , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Picea/fisiologia , Água do Mar , Árvores/fisiologia
8.
Plant Physiol ; 185(4): 1682-1696, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33893814

RESUMO

Increasing sea levels associated with climate change threaten the survival of coastal forests, yet the mechanisms by which seawater exposure causes tree death remain poorly understood. Despite the potentially crucial role of nonstructural carbohydrate (NSC) reserves in tree survival, their dynamics in the process of death under seawater exposure are unknown. Here we monitored progressive tree mortality and associated NSC storage in Sitka-spruce (Picea sitchensis) trees dying under ecosystem-scale increases in seawater exposure in western Washington, USA. All trees exposed to seawater, because of monthly tidal intrusion, experienced declining crown foliage during the sampling period, and individuals with a lower percentage of live foliated crown (PLFC) died faster. Tree PLFC was strongly correlated with subsurface salinity and needle ion contents. Total NSC concentrations in trees declined remarkably with crown decline, and reached extremely low levels at tree death (2.4% and 1.6% in leaves and branches, respectively, and 0.4% in stems and roots). Starch in all tissues was almost completely consumed, while sugars remained at a homeostatic level in foliage. The decreasing NSC with closer proximity to death and near zero starch at death are evidences that carbon starvation occurred during Sitka-spruce mortality during seawater exposure. Our results highlight the importance of carbon storage as an indicator of tree mortality risks under seawater exposure.


Assuntos
Metabolismo dos Carboidratos , Carboidratos/análise , Picea/química , Picea/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Estresse Salino , Água do Mar/efeitos adversos , Causas de Morte , Salinidade , Washington
9.
Sci Total Environ ; 753: 141944, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32889323

RESUMO

Rivers and streams represent <0.6% of the Earth's land surface but play a disproportionately large role in global biogeochemical cycles and provide locally relevant ecosystem services. However, knowledge of how rivers influence material budgets and ecosystem services has major gaps due to the lack of explicit consideration of tidally-influenced reaches. Focusing on the conterminous US, we provide a foundation for understanding the role of tidal streams. We find that 66% of tidal stream length is contributed from low order streams (< 4th order), and that terrestrial ecosystem production in low-lying coastal zones is 30% greater than in adjacent terrestrial ecosystems. This prevalence of small streams indicates that small coastal watersheds dominate tidally influenced spatial domains. Furthermore, we find that relative sea-level rise (RSLR) will have a disproportionate impact on low order tidal streams and their terrestrial interfaces - 1 m RSLR will decrease the tidal stream land-water interface by 17% and the total surface area of US tidal streams by 31%. Upstream reaches of tidal zones will be extended in response to RSLR, but gains will be more than offset by coastal losses because topographic gradients become steeper moving inland, and accretion rates may not keep pace with RSLR. These results highlight previously unrecognized dominance, high productivity, and disproportionate future loss of low-order coastal ecosystems. This indicates a critical need to focus research on small tidal stream systems under contemporary and future conditions.

10.
Nat Commun ; 11(1): 2458, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424260

RESUMO

Between the land and ocean, diverse coastal ecosystems transform, store, and transport material. Across these interfaces, the dynamic exchange of energy and matter is driven by hydrological and hydrodynamic processes such as river and groundwater discharge, tides, waves, and storms. These dynamics regulate ecosystem functions and Earth's climate, yet global models lack representation of coastal processes and related feedbacks, impeding their predictions of coastal and global responses to change. Here, we assess existing coastal monitoring networks and regional models, existing challenges in these efforts, and recommend a path towards development of global models that more robustly reflect the coastal interface.

11.
Sci Rep ; 10(1): 4693, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170204

RESUMO

As CO2 levels in Earth's atmosphere and oceans steadily rise, varying organismal responses may produce ecological losers and winners. Increased ocean CO2 can enhance seagrass productivity and thermal tolerance, providing some compensation for climate warming. However, the metabolic shifts driving the positive response to elevated CO2 by these important ecosystem engineers remain unknown. We analyzed whole-plant performance and metabolic profiles of two geographically distinct eelgrass (Zostera marina L.) populations in response to CO2 enrichment. In addition to enhancing overall plant size, growth and survival, CO2 enrichment increased the abundance of Calvin Cycle and nitrogen assimilation metabolites while suppressing the abundance of stress-related metabolites. Overall metabolome differences between populations suggest that some eelgrass phenotypes may be better suited than others to cope with an increasingly hot and sour sea. Our results suggest that seagrass populations will respond variably, but overall positively, to increasing CO2 concentrations, generating negative feedbacks to climate change.


Assuntos
Dióxido de Carbono , Metaboloma , Metabolômica , Temperatura , Zosteraceae/fisiologia , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Redes e Vias Metabólicas , Oceanos e Mares , Água do Mar
12.
Nat Commun ; 10(1): 4018, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488815

RESUMO

Riverine dissolved organic carbon (DOC) contains charcoal byproducts, termed black carbon (BC). To determine the significance of BC as a sink of atmospheric CO2 and reconcile budgets, the sources and fate of this large, slow-cycling and elusive carbon pool must be constrained. The Amazon River is a significant part of global BC cycling because it exports an order of magnitude more DOC, and thus dissolved BC (DBC), than any other river. We report spatially resolved DBC quantity and radiocarbon (Δ14C) measurements, paired with molecular-level characterization of dissolved organic matter from the Amazon River and tributaries during low discharge. The proportion of BC-like polycyclic aromatic structures decreases downstream, but marked spatial variability in abundance and Δ14C values of DBC molecular markers imply dynamic sources and cycling in a manner that is incongruent with bulk DOC. We estimate a flux from the Amazon River of 1.9-2.7 Tg DBC yr-1 that is composed of predominately young DBC, suggesting that loss processes of modern DBC are important.

13.
Opt Express ; 26(14): A657-A677, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114008

RESUMO

Coloured dissolved organic matter (CDOM) is one of the major contributors to the absorption budget of most freshwaters and can be used as a proxy to assess non-optical carbon fractions such as dissolved organic carbon (DOC) and the partial pressure of carbon dioxide (pCO2). Nevertheless, riverine studies that explore the former relationships are still relatively scarce, especially within tropical regions. Here we document the spatial-seasonal variability of CDOM, DOC and pCO2, and assess the potential of CDOM absorption coefficient (aCDOM(412)) for estimating DOC concentration and pCO2 along the Lower Amazon River. Our results revealed differences in the dissolved organic matter (DOM) quality between clearwater (CW) tributaries and the Amazon River mainstream. A linear relationship between DOC and CDOM was observed when tributaries and mainstream are evaluated separately (Amazon River: N = 42, R2 = 0.74, p<0.05; CW: N = 13, R2 = 0.57, p<0.05). However, this linear relationship was not observed during periods of higher rainfall and river discharge, requiring a specific model for these time periods to be developed (N = 25, R2 = 0.58, p<0.05). A strong linear positive relation was found between aCDOM(412) and pCO2(N = 69, R2 = 0.65, p<0.05) along the lower river. pCO2 was less affected by the optical difference between tributaries and mainstream waters or by the discharge conditions when compared to CDOM to DOC relationships. Including the river water temperature in the model improves our ability to estimate pCO2 (N = 69; R2 = 0.80, p<0.05). The ability to assess both DOC and pCO2 from CDOM optical properties opens further perspectives on the use of ocean colour remote sensing data for monitoring carbon dynamics in large running water systems worldwide.

14.
mSphere ; 2(5)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28989970

RESUMO

The Amazon River watershed and its associated plume comprise a vast continental and oceanic area. The microbial activities along this continuum contribute substantially to global carbon and nutrient cycling, and yet there is a dearth of information on the diversity, abundance, and possible roles of viruses in this globally important river. The aim of this study was to elucidate the diversity and structure of virus assemblages of the Amazon River-ocean continuum. Environmental viral DNA sequences were obtained for 12 locations along the river's lower reach (n = 5) and plume (n = 7). Sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes. Despite the spatial connectivity mediated by the river, virome analyses and physical-chemical water parameters clearly distinguished river and plume ecosystems. Bacteriophages were ubiquitous in the continuum and were more abundant in the transition region. Eukaryotic viruses occurred mostly in the river, while the plume had more viruses of autotrophic organisms (Prochlorococcus, Synechococcus) and heterotrophic bacteria (Pelagibacter). The viral families Microviridae and Myoviridae were the most abundant and occurred throughout the continuum. The major functions of the genes in the continuum involved viral structures and life cycles, and viruses from plume locations and Tapajós River showed the highest levels of functional diversity. The distribution patterns of the viral assemblages were defined not only by the occurrence of possible hosts but also by water physical and chemical parameters, especially salinity. The findings presented here help to improve understanding of the possible roles of viruses in the organic matter cycle along the river-ocean continuum. IMPORTANCE The Amazon River forms a vast plume in the Atlantic Ocean that can extend for more than 1,000 km. Microbial communities promote a globally relevant carbon sink system in the plume. Despite the importance of viruses for the global carbon cycle, the diversity and the possible roles of viruses in the Amazon are poorly understood. The present work assesses, for the first time, the abundance and diversity of viruses simultaneously in the river and ocean in order to elucidate their possible roles. DNA sequence assembly yielded 29,358 scaffolds, encoding 82,546 viral proteins, with 15 new complete viral genomes from the 12 river and ocean locations. Viral diversity was clearly distinguished by river and ocean. Bacteriophages were the most abundant and occurred throughout the continuum. Viruses that infect eukaryotes were more abundant in the river, whereas phages appeared to have strong control over the host prokaryotic populations in the plume.

15.
Front Microbiol ; 8: 882, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588561

RESUMO

Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 µm and >2.0 µm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and coastal oceans. Comparison of Amazon continuum microbial communities to those from temperate and arctic systems suggest that river discharge and salinity are master variables structuring a range of environmental conditions that control bacterial communities across the river-ocean continuum.

16.
Breast J ; 23(1): 95-99, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27633708

RESUMO

Necrotizing fasciitis is a rare, aggressive, soft-tissue infection that results in necrosis of skin, subcutaneous tissue, and fascia. It spreads rapidly and may progress to sepsis, multi-organ failure, and death. Predisposing conditions include diabetes, chronic alcoholism, advanced age, vascular disease, and immunosuppression and many cases are preceded by an injury or invasive procedure. Necrotizing soft-tissue infection of the breast is uncommon, with only a few reported cases in the literature. We present a 53-year-old diabetic woman who presented to the emergency room with several weeks of worsening breast and shoulder pain, swelling, and erythema. Upon formal evaluation by the surgical service, a necrotizing soft-tissue infection was suspected, and the patient was scheduled for emergent, surgical debridement. Because of the aggressive nature and high mortality of this disease, immediate surgical intervention, coupled with antibiotic therapy and physiologic support, is necessary to prevent complications and death.


Assuntos
Fasciite Necrosante/tratamento farmacológico , Fasciite Necrosante/cirurgia , Mastectomia Radical , Fasciite Necrosante/microbiologia , Feminino , Humanos , Pessoa de Meia-Idade
17.
J Surg Res ; 203(2): 459-65, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27363656

RESUMO

BACKGROUND: Patients undergoing ventral hernia repair (VHR) with biologic mesh (BioM) have higher hospital costs compared with synthetic mesh (SynM). This study compares 90-d pre- and post-VHR hospital costs (180-d) among BioM and SynM based on infection risk. METHODS: This retrospective National Surgical Quality Improvement Program study matched patient perioperative risk with resource utilization cost for a consecutive series of VHR repairs. Patient infection risks, clinical and financial outcomes were compared in unmatched SynM (n = 303) and BioM (n = 72) groups. Propensity scores were used to match 35 SynM and BioM pairs of cases with similar infection risk for outcomes analysis. RESULTS: BioM patients in the unmatched group were older with higher American Society of Anesthesiologists (ASA) and wound classification, and they more frequently underwent open repairs for recurrent hernias. Wound surgical site infections were more frequent in unmatched BioM patients (P = 0.001) as were 180-d costs ($43.8k versus $14.0k, P < 0.001). Propensity matching resulted in 31 clean cases. In these low-risk patients, wound occurrences and readmissions were identical, but 180-d costs remained higher ($31.8k versus $15.5k, P < 0.001). There were no differences in hospital 180-d diagnostic, emergency room, intensive care unit, floor, pharmacy, or therapeutic costs. However, 180-d operating room services and supply costs were higher in the BioM group ($21.1k versus $7.1k, P < 0.001). CONCLUSIONS: BioM is used more commonly in hernia repairs involving higher wound class and ASA scores and recurrent hernias. Clinical outcomes after low-risk VHRs are similar; SynM utilization in low-risk hernia repairs was more cost-effective.


Assuntos
Análise Custo-Benefício , Hérnia Ventral/cirurgia , Herniorrafia/instrumentação , Custos Hospitalares/estatística & dados numéricos , Telas Cirúrgicas/economia , Adulto , Idoso , Feminino , Seguimentos , Hérnia Ventral/economia , Herniorrafia/economia , Herniorrafia/métodos , Humanos , Kentucky , Masculino , Pessoa de Meia-Idade , Pontuação de Propensão , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Infecção da Ferida Cirúrgica/economia , Infecção da Ferida Cirúrgica/etiologia , Resultado do Tratamento
18.
Glob Chang Biol ; 22(3): 1075-85, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26872424

RESUMO

The flux of methane (CH4 ) from inland waters to the atmosphere has a profound impact on global atmospheric greenhouse gas (GHG) levels, and yet, strikingly little is known about the dynamics controlling sources and sinks of CH4 in the aquatic setting. Here, we examine the cycling and flux of CH4 in six large rivers in the Amazon basin, including the Amazon River. Based on stable isotopic mass balances of CH4 , inputs and outputs to the water column were estimated. We determined that ecosystem methane oxidation (MOX) reduced the diffusive flux of CH4 by approximately 28-96% and varied depending on hydrologic regime and general geochemical characteristics of tributaries of the Amazon River. For example, the relative amount of MOX was maximal during high water in black and white water rivers and minimal in clear water rivers during low water. The abundance of genetic markers for methane-oxidizing bacteria (pmoA) was positively correlated with enhanced signals of oxidation, providing independent support for the detected MOX patterns. The results indicate that MOX in large Amazonian rivers can consume from 0.45 to 2.07 Tg CH4 yr(-1) , representing up to 7% of the estimated global soil sink. Nevertheless, climate change and changes in hydrology, for example, due to construction of dams, can alter this balance, influencing CH4 emissions to atmosphere.


Assuntos
Poluentes Atmosféricos/metabolismo , Bactérias/metabolismo , Metano/metabolismo , Rios/química , Bactérias/genética , Proteínas de Bactérias/análise , Biomarcadores , Brasil , Ecossistema , Monitoramento Ambiental , Oxirredução
19.
Ann Thorac Surg ; 101(2): 489-94, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26409709

RESUMO

BACKGROUND: Current guidelines for gastrointestinal cancer surgical intervention in high-risk patients recommend postoperative venous thromboembolism (VTE) chemical prophylaxis for 4 weeks with low-dose unfractionated heparin or low-molecular-weight heparin, but specific guidelines for esophagectomy are lacking. This survey identified the clinical patterns affecting postesophagectomy VTE chemoprophylaxis use among general thoracic surgeons. METHODS: General Thoracic Surgery Club members were invited to complete an online survey on VTE prophylaxis to analyze clinical factors affecting their choices. RESULTS: Seventy-seven surgeons (37% membership) responded; of these, 94% (72 of 77) completed fellowships, and 76% (58 of 77) worked at universities. VTE chemoprophylaxis administration varied widely in drug, dosing, and duration, with 30% using suboptimal dosing of unfractionated heparin (every 12 hours). Participants agreed that esophagectomy patients are at high VTE risk, yet 29% (22 of 76) of surgeons delay VTE chemoprophylaxis until postoperative day 1. Only 13% (10 of 77) prescribe postdischarge chemoprophylaxis. Minimally invasive surgeons (>90% of cases) were more likely to prescribe postdischarge prophylaxis (p = 0.007). Epidurals, routinely used by 65% (51 of 78), led to less compliance with recommended dosing. Only 53% (27 of 51) of pain teams allow unfractionated heparin every 8 hours, yet 73% (37 of 51) allow suboptimal dosing (every 12 h). Postoperative major complications were identified as a VTE risk factor by only 21% (15 of 72) of surgeons. Most (92% [68 of 74]) would follow esophagectomy-specific guidelines, if developed. CONCLUSIONS: Thoracic surgeons agree that VTE chemoprophylaxis is necessary for esophagectomy, yet substantial variability exists in current practice. A noteworthy proportion use suboptimal dosing, and very few choose postdischarge prophylaxis. To improve postesophagectomy morbidity and mortality outcomes, thoracic surgeons are willing to follow evidence-based guidelines for VTE chemoprophylaxis.


Assuntos
Anticoagulantes/uso terapêutico , Esofagectomia , Heparina/uso terapêutico , Complicações Pós-Operatórias/prevenção & controle , Padrões de Prática Médica , Cirurgia Torácica , Tromboembolia Venosa/prevenção & controle , Humanos , Inquéritos e Questionários
20.
Microbiome ; 3: 39, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26353777

RESUMO

BACKGROUND: The Amazon River runs nearly 6500 km across the South American continent before emptying into the western tropical North Atlantic Ocean. In terms of both volume and watershed area, it is the world's largest riverine system, affecting elemental cycling on a global scale. RESULTS: A quantitative inventory of genes and transcripts benchmarked with internal standards was obtained at five stations in the lower Amazon River during May 2011. At each station, metagenomes and metatranscriptomes were obtained in duplicate for two microbial size fractions (free-living, 0.2 to 2.0 µm; particle-associated, 2.0 to 297 µm) using 150 × 150 paired-end Illumina sequencing. Forty eight sample datasets were obtained, averaging 15 × 10(6) potential protein-encoding reads each (730 × 10(6) total). Prokaryotic metagenomes and metatranscriptomes were dominated by members of the phyla Actinobacteria, Planctomycetes, Betaproteobacteria, Verrucomicrobia, Nitrospirae, and Acidobacteria. The actinobacterium SCGC AAA027-L06 reference genome recruited the greatest number of reads overall, with this single bin contributing an average of 50 billion genes and 500 million transcripts per liter of river water. Several dominant taxa were unevenly distributed between the free-living and particle-associated size fractions, such as a particle-associated bias for reads binning to planctomycete Schlesneria paludicola and a free-living bias for actinobacterium SCGC AAA027-L06. Gene expression ratios (transcripts to gene copy ratio) increased downstream from Óbidos to Macapá and Belém, indicating higher per cell activity of Amazon River bacteria and archaea as river water approached the ocean. CONCLUSION: This inventory of riverine microbial genes and transcripts, benchmarked with internal standards for full quantitation, provides an unparalleled window into microbial taxa and functions in the globally important Amazon River ecosystem.


Assuntos
Metagenoma , Metagenômica , Rios/microbiologia , Estações do Ano , Transcriptoma , Microbiota
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA