RESUMO
Bone stress injuries (BSIs) frequently occur in the leg and foot long bones of female distance runners. A potential means of preventing BSIs is to participate in multidirectional sports when younger to build a more robust skeleton. The current cross-sectional study compared differences in tibia, fibula, and second metatarsal diaphysis size, shape, and strength between female collegiate-level athletes specialized in cross-country running (RUN, n = 16) and soccer (SOC, n = 16). Assessments were performed using high-resolution peripheral quantitative computed tomography and outcomes corrected for measures at the radius diaphysis to control for selection bias and systemic differences between groups. The tibia in SOC had a 7.5 % larger total area than RUN, with a 29.4 % greater minimum second moment of area (IMIN) and 8.2 % greater estimated failure load (all p ≤ 0.02). Tibial values in SOC exceeded reference data indicating positive adaptation. In contrast, values in RUN were similar to reference data suggesting running induced limited tibial adaptation. RUN did have a larger ratio between their maximum second moment of area (IMAX) and IMIN than both SOC and reference values. This suggests the unidirectional loading associated with running altered tibial shape with material distributed more in the anteroposterior (IMAX) direction as opposed to the mediolateral (IMIN) direction. Comparatively, SOC had a similar IMAX/IMIN ratio to reference data suggesting the larger tibia in SOC resulted from multiplane adaptation. In addition to enhanced size and strength of their tibia, SOC had enhanced structure and strength of their fibula and second metatarsal. At both sites, polar moment of inertia was approximately 25 % larger in SOC compared to RUN (all p = 0.03). These data support calls for young female athletes to delay specialization in running and participate in multidirectional sports, like soccer, to build a more robust skeleton that is potentially more protected against BSIs.
Assuntos
Fíbula , Ossos do Metatarso , Corrida , Futebol , Tíbia , Humanos , Feminino , Fíbula/anatomia & histologia , Fíbula/diagnóstico por imagem , Fíbula/fisiologia , Futebol/fisiologia , Corrida/fisiologia , Ossos do Metatarso/diagnóstico por imagem , Ossos do Metatarso/anatomia & histologia , Ossos do Metatarso/fisiologia , Tíbia/anatomia & histologia , Tíbia/fisiologia , Tíbia/diagnóstico por imagem , Adulto Jovem , Atletas , Estudos Transversais , Adolescente , AdultoRESUMO
Osteoporosis is characterized by low bone mass and structural deterioration of bone tissue, which leads to bone fragility (ie, weakness) and an increased risk for fracture. The current standard for assessing bone health and diagnosing osteoporosis is DXA, which quantifies areal BMD, typically at the hip and spine. However, DXA-derived BMD assesses only one component of bone health and is notably limited in evaluating the bone strength, a critical factor in fracture resistance. Although multifrequency vibration analysis can quickly and painlessly assay bone strength, there has been limited success in advancing a device of this nature. Recent progress has resulted in the development of Cortical Bone Mechanics Technology (CBMT), which conducts a dynamic 3-point bending test to assess the flexural rigidity (EI) of ulnar cortical bone. Data indicate that ulnar EI accurately estimates ulnar whole bone strength and provides unique and independent information about cortical bone compared to DXA-derived BMD. Consequently, CBMT has the potential to address a critical unmet need: Better identification of patients with diminished bone strength who are at high risk of experiencing a fragility fracture. However, the clinical utility of CBMT-derived EI has not yet been demonstrated. We have designed a clinical study to assess the accuracy of CBMT-derived ulnar EI in discriminating post-menopausal women who have suffered a fragility fracture from those who have not. These data will be compared to DXA-derived peripheral and central measures of BMD obtained from the same subjects. In this article, we describe the study protocol for this multi-center fracture discrimination study (The STRONGER Study).
RESUMO
Voltage-sensitive calcium channels (VSCCs) influence bone structure and function, including anabolic responses to mechanical loading. While the pore-forming (α1) subunit of VSCCs allows Ca2+ influx, auxiliary subunits regulate the biophysical properties of the pore. The α2δ1 subunit influences gating kinetics of the α1 pore and enables mechanically induced signaling in osteocytes; however, the skeletal function of α2δ1 in vivo remains unknown. In this work, we examined the skeletal consequences of deleting Cacna2d1, the gene encoding α2δ1. Dual-energy X-ray absorptiometry and microcomputed tomography imaging demonstrated that deletion of α2δ1 diminished bone mineral content and density in both male and female C57BL/6 mice. Structural differences manifested in both trabecular and cortical bone for males, while the absence of α2δ1 affected only cortical bone in female mice. Deletion of α2δ1 impaired skeletal mechanical properties in both sexes, as measured by three-point bending to failure. While no changes in osteoblast number or activity were found for either sex, male mice displayed a significant increase in osteoclast number, accompanied by increased eroded bone surface and upregulation of genes that regulate osteoclast differentiation. Deletion of α2δ1 also rendered the skeleton insensitive to exogenous mechanical loading in males. While previous work demonstrates that VSCCs are essential for anabolic responses to mechanical loading, the mechanism by which these channels sense and respond to force remained unclear. Our data demonstrate that the α2δ1 auxiliary VSCC subunit functions to maintain baseline bone mass and strength through regulation of osteoclast activity and also provides skeletal mechanotransduction in male mice. These data reveal a molecular player in our understanding of the mechanisms by which VSCCs influence skeletal adaptation.
RESUMO
INTRODUCTION: Conventional bone imaging methods primarily use X-ray techniques to assess bone mineral density (BMD), focusing exclusively on the mineral phase. This approach lacks information about the organic phase and bone water content, resulting in an incomplete evaluation of bone health. Recent research highlights the potential of ultrashort echo time magnetic resonance imaging (UTE MRI) to measure cortical porosity and estimate BMD based on signal intensity. UTE MRI also provides insights into bone water distribution and matrix organization, enabling a comprehensive bone assessment with a single imaging technique. Our study aimed to establish quantifiable UTE MRI-based biomarkers at clinical field strength to estimate BMD and microarchitecture while quantifying bound water content and matrix organization. METHODS: Femoral bones from 11 cadaveric specimens (n = 4 males 67-92 yrs of age, n = 7 females 70-95 yrs of age) underwent dual-echo UTE MRI (3.0 T, 0.45 mm resolution) with different echo times and high resolution peripheral quantitative computed tomography (HR-pQCT) imaging (60.7 µm voxel size). Following registration, a 4.5 mm HR-pQCT region of interest was divided into four quadrants and used across the multi-modal images. Statistical analysis involved Pearson correlation between UTE MRI porosity index and a signal-intensity technique used to estimate BMD with corresponding HR-pQCT measures. UTE MRI was used to calculate T1 relaxation time and a novel bound water index (BWI), compared across subregions using repeated measures ANOVA. RESULTS: The UTE MRI-derived porosity index and signal-intensity-based estimated BMD correlated with the HR-pQCT variables (porosity: r = 0.73, p = 0.006; BMD: r = 0.79, p = 0.002). However, these correlations varied in strength when we examined each of the four quadrants (subregions, r = 0.11-0.71). T1 relaxometry and the BWI exhibited variations across the four subregions, though these differences were not statistically significant. Notably, we observed a strong negative correlation between T1 relaxation time and the BWI (r = -0.87, p = 0.0006). CONCLUSION: UTE MRI shows promise for being an innocuous method for estimating cortical porosity and BMD parameters while also giving insight into bone hydration and matrix organization. This method offers the potential to equip clinicians with a more comprehensive array of imaging biomarkers to assess bone health without the need for invasive or ionizing procedures.
Assuntos
Osso Cortical , Imageamento por Ressonância Magnética , Masculino , Feminino , Humanos , Criança , Estudos de Viabilidade , Microtomografia por Raio-X , Osso Cortical/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , ÁguaRESUMO
Cross-sectional size of a long bone shaft influences its mechanical properties. We recently used high-resolution peripheral quantitative computed tomography (HRpQCT) to create reference data for size measures of the radial and tibial diaphyses. However, data did not take into account the impact of bone length. Human bone exhibits relatively isometric allometry whereby cross-sectional area increases proportionally with bone length. The consequence is that taller than average individuals will generally have larger z-scores for bone size outcomes when length is not considered. The goal of the current work was to develop a means of determining whether an individual's cross-sectional bone size is suitable for their bone length. HRpQCT scans performed at 30 % of bone length proximal from the distal end of the radius and tibia were acquired from 1034 White females (age = 18.0 to 85.3 y) and 392 White males (age = 18.4 to 83.6 y). Positive relationships were confirmed between bone length and cross-sectional areas and estimated mechanical properties. Scaling factors were calculated and used to scale HRpQCT outcomes to bone length. Centile curves were generated for both raw and bone length scaled HRpQCT data using the LMS approach. Excel-based calculators are provided to facilitate calculation of z-scores for both raw and bone length scaled HRpQCT outcomes. The raw z-scores indicate the magnitude that an individual's HRpQCT outcomes differ relative to expected sex- and age-specific values, with the scaled z-scores also considering bone length. The latter enables it to be determined whether an individual or population of interest has normal sized bones for their length, which may have implications for injury risk. In addition to providing a means of expressing HRpQCT bone size outcomes relative to bone length, the current study also provides centile curves for outcomes previously without reference data, including tissue mineral density and moments of inertia.
RESUMO
CONTEXT: Autosomal dominant osteopetrosis (ADO) is a rare genetic disorder resulting from impaired osteoclastic bone resorption. Clinical manifestations frequently include fractures, osteonecrosis (particularly of the jaw or maxilla), osteomyelitis, blindness, and/or bone marrow failure. ADO usually results from heterozygous missense variants in the Chloride Channel 7 gene (CLCN7) that cause disease by a dominant negative mechanism. Variants in the T-cell immune regulator 1 gene (TCIRG1) are commonly identified in autosomal recessive osteopetrosis but have only been reported in 1 patient with ADO. CASE DESCRIPTION: Here, we report 3 family members with a single heterozygous missense variant (p.Gly579Arg) in TCIRG1 who have a phenotype consistent with ADO. Three of 5 protein prediction programs suggest this variant likely inhibits the function of TCIRG1. CONCLUSION: This is the first description of adult presentation of ADO caused by a TCIRG1 variant. Similar to families with ADO from CLCN7 mutations, this variant in TCIRG1 results in marked phenotype variability, with 2 subjects having severe disease and the third having very mild disease. This family report implicates TCIRG1 missense mutations as a cause of ADO and demonstrates that the marked phenotypic variability in ADO may extend to disease caused by TCIRG1 missense mutations.
Assuntos
Mutação de Sentido Incorreto , Osteopetrose , Linhagem , Humanos , Osteopetrose/genética , Masculino , Feminino , Adulto , ATPases Vacuolares Próton-Translocadoras/genética , Fenótipo , Pessoa de Meia-Idade , Genes DominantesRESUMO
We evaluated biochemical changes in skeletal muscle of women with breast cancer initiating aromatase inhibitors (AI), including oxidation of ryanodine receptor RyR1 and loss of stabilizing protein calstabin1, and detailed measures of muscle function. Fifteen postmenopausal women with stage I-III breast cancer planning to initiate AI enrolled. Quadriceps muscle biopsy, dual-energy x-ray absorptiometry, isokinetic dynamometry, Short Physical Performance Battery, grip strength, 6-min walk, patient-reported outcomes, and serologic measures of bone turnover were assessed before and after 6 months of AI. Post-AI exposure, oxidation of RyR1 significantly increased (0.23 ± 0.37 vs. 0.88 ± 0.80, p < 0.001) and RyR1-bound calstabin1 significantly decreased (1.69 ± 1.53 vs. 0.74 ± 0.85, p < 0.001), consistent with dysfunctional calcium channels in skeletal muscle. Grip strength significantly decreased at 6 months. No significant differences were seen in isokinetic dynamometry measures of muscle contractility, fatigue resistance, or muscle recovery post-AI exposure. However, there was significant correlation between oxidation of RyR1 with muscle power (r = 0.60, p = 0.02) and muscle fatigue (r = 0.57, p = 0.03). Estrogen deprivation therapy for breast cancer resulted in maladaptive changes in skeletal muscle, consistent with the biochemical signature of dysfunctional RyR1 calcium channels. Future studies will evaluate longer trajectories of muscle function change and include other high bone turnover states, such as bone metastases.
Assuntos
Neoplasias da Mama , Canal de Liberação de Cálcio do Receptor de Rianodina , Feminino , Humanos , Inibidores da Aromatase/farmacologia , Inibidores da Aromatase/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Músculo Esquelético , CaminhadaRESUMO
Epidemiological studies have reported a strong association between circulating Klotho and physical function; however, the cohorts were comprised of older adults with multiple comorbidities. Herein, we examined the relationship between Klotho and physical function in a community-based cohort of healthy adults. In this cross-sectional study, serum Klotho was measured in 80 adults who visited the Musculoskeletal Function, Imaging, and Tissue Resource Core of the Indiana Center for Musculoskeletal Health. Participants (n = 20, 10 [50%] men per group) were chosen into four age groups: 20-34, 35-49, 50-64, and ≥ 65 years, and were further grouped based on performance (low vs. high) on grip strength and chair stand tests. Klotho levels were lower in the ≥ 65 years group (703.0 [189.3] pg/mL; p = 0.022) and the 50-64 years group (722.6 [190.5] pg/mL; p = 0.045) compared to 20-34 years (916.1 [284.8] pg/mL). No differences were observed in Klotho between the low and high performers. The ≥ 65 years group walked a shorter distance during the 6-min walk test (6MWT) compared to 20-34 years (p = 0.005). Klotho was correlated with age (p < 0.001), body fat (p = 0.037), and 6MWT distance (p = 0.022). Klotho levels decline as early as the fifth decade of life, potentially before the onset of age-related impairment in exercise capacity.
Assuntos
Glucuronidase , Envelhecimento Saudável , Adulto , Idoso , Feminino , Humanos , Masculino , Adulto Jovem , Estudos Transversais , Força da Mão , CaminhadaRESUMO
As both L- and D-BAIBA are increased with exercise, we sought to determine if circulating levels would be associated with physical performance. Serum levels of L- and D-BAIBA were quantified in 120 individuals (50% female) aged 20-85 years and categorized as either a "low" (LP), "average" (AP) or "high" performing (HP). Association analysis was performed using Spearman (S) and Pearson (P) correlation. Using Spearman correlation, L-BAIBA positively associated with (1) body mass index BMI (0.23) and total fat mass (0.19) in the 120 participants, (2) total fat mass in the 60 males (0.26), and (3) bone mineral density, BMD, (0.28) in addition to BMI (0.26) in the 60 females. In HP females, L-BAIBA positively associated with BMD (0.50) and lean mass (0.47). D-BAIBA was positively associated with (1) age (P 0.20) in the 120 participants, (2) age (P 0.49) in the LP females and (3) with gait speed (S 0.20) in the 120 participants. However, in HP males, this enantiomer had a negative association with appendicular lean/height (S - 0.52) and in the AP males a negative correlation with BMD (S - 0.47). No associations were observed in HP or AP females, whereas, in LP females, a positive association was observed with grip strength (S 0.45), but a negative with BMD (P - 0.52, S - 0.63) and chair stands (P - 0.47, S - 0.51). L-BAIBA may play a role in BMI and BMD in females, not males, whereas D-BAIBA may be a marker for aging and physical performance. The association of L-BAIBA with BMI and fat mass may reveal novel, not previously described functions for this enantiomer.
Assuntos
Densidade Óssea , Desempenho Físico Funcional , Masculino , Humanos , Feminino , Índice de Massa Corporal , Composição Corporal , Absorciometria de FótonRESUMO
Declining physical performance with age and disease is an important indicator of declining health. Biomarkers that identify declining physical performance would be useful in predicting treatment outcomes and identifying potential therapeutics. γ-aminobutyric acid (GABA), a muscle autocrine factor, is a potent inhibitor of muscle function and works as a muscle relaxant. L-α-aminobutyric acid (L-AABA) is a biomarker for malnutrition, liver damage, and depression. We sought to determine if GABA and L-AABA may be useful for predicting physical performance. Serum levels of GABA and L-AABA were quantified in 120 individuals divided by age, sex, and physical capacity into low, average, and high performer groups. Analyses explored correlations between serum levels and physical performance. Both GABA and the ratio of GABA/AABA (G/A), but not AABA, were highly positively associated with age (Pearson correlations r = 0.35, p = 0.0001 for GABA, r = 0.31, p = 0.0007 for G/A, n = 120). GABA showed negative associations in the whole cohort with physical performance [fast gait speed, 6 min walk test (6MWT), PROMIS score, and SF36PFS raw score] and with subtotal and femoral neck bone mineral density. L-AABA was positively associated with usual gait speed, 6MWT, total SPPB score, and SF36PFS raw score in the total cohort of 120 human subjects, also with 6MWT and SF36PFS raw score in the 60 male subjects, but no associations were observed in the 60 females. As both GABA and L-AABA appear to be indicative of physical performance, but in opposite directions, we examined the G/A ratio. Unlike GABA, the G/A ratio showed a more distinct association with mobility tests such as total SPPB score, usual and fast gait speed, 6MWT, and SF36PFS raw score in the males, regardless of age and metabolic status. Serum G/A ratio could be potentially linked to physical performance in the male population. Our findings strongly suggest that GABA, L-AABA, and the G/A ratio in human serum may be useful markers for both age and physical function. These new biomarkers may significantly enhance the goal of identifying universal biomarkers to accurately predict physical performance and the beneficial effects of exercise training for older adults.
Assuntos
Aminobutiratos , Ácido gama-Aminobutírico , Feminino , Humanos , Masculino , Idoso , Desempenho Físico Funcional , Envelhecimento , BiomarcadoresRESUMO
Introduction: Sarcopenia (low muscle mass and strength) causes dysmobility and loss of independence. Sarcopenia is often not directly coded or described in electronic health records (EHR). The objective was to improve sarcopenia detection using structured data from EHR. Methods: Adults undergoing musculoskeletal testing (December 2017-March 2020) were classified as meeting sarcopenia thresholds for 0 (controls), ≥1 (Sarcopenia-1), or ≥2 (Sarcopenia-2) tests. Electronic health record diagnoses, medications, and laboratory testing were extracted from the Indiana Network for Patient Care. Five machine learning models were applied to EHR data for predicting sarcopenia. Results: Of 1304 participants, 1055 were controls, 249 met Sarcopenia-1 and 76 met Sarcopenia-2. Sarcopenic participants were older, with higher fat mass, Charlson Comorbidity Index, and more chronic diseases. All models performed better for Sarcopenia-2 than Sarcopenia-1. The top performing models for Sarcopenia-1 were Logistic Regression [area under the curve (AUC) 71.59 (95% confidence interval [CI], 71.51-71.66)] and Multi-Layer Perceptron [AUC 71.48 (95%CI, 71.00-71.97)]. The top performing models for Sarcopenia-2 were Logistic Regression [AUC 91.44 (95%CI, 91.28-91.60)] and Support Vector Machine [AUC 90.81 (95%CI, 88.41-93.20)]. For the best Logistic Regression Model, important sarcopenia predictors included diabetes mellitus, digestive system complaints, signs and symptoms involving the nervous, musculoskeletal and respiratory systems, metabolic disorders, and kidney or urinary tract disorders. Opioids, corticosteroids, and antihyperlipidemic drugs were also more common among sarcopenic participants. Conclusions: Applying machine learning models, sarcopenia can be predicted from structured data in EHR, which may be developed through future studies to facilitate large-scale early detection and intervention in clinical populations.
RESUMO
BACKGROUND: The impact of activity-related joint loading on cartilage is not clear. Abnormal loading is considered to be a mechanical driver of osteoarthritis (OA), yet moderate amounts of physical activity and rehabilitation exercise can have positive effects on articular cartilage. Our aim was to investigate the immediate effects of joint loading activities on knee and hip cartilage in healthy adults, as assessed using magnetic resonance imaging. We also investigated delayed effects of activities on healthy cartilage and the effects of activities on cartilage in adults with, or at risk of, OA. We explored the association of sex, age and loading duration with cartilage changes. METHODS: A systematic review of six databases identified studies assessing change in adult hip and knee cartilage using MRI within 48 h before and after application of a joint loading intervention/activity. Studies included adults with healthy cartilage or those with, or at risk of, OA. Joint loading activities included walking, hopping, cycling, weightbearing knee bends and simulated standing within the scanner. Risk of bias was assessed using the Newcastle-Ottawa Scale. Random-effects meta-analysis estimated the percentage change in compartment-specific cartilage thickness or volume and composition (T2 relaxation time) outcomes. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system evaluated certainty of evidence. RESULTS: Forty studies of 653 participants were included after screening 5159 retrieved studies. Knee cartilage thickness or volume decreased immediately following all loading activities investigating healthy adults; however, GRADE assessment indicated very low certainty evidence. Patellar cartilage thickness and volume reduced 5.0% (95% CI 3.5, 6.4, I2 = 89.3%) after body weight knee bends, and tibial cartilage composition (T2 relaxation time) decreased 5.1% (95% CI 3.7, 6.5, I2 = 0.0%) after simulated standing within the scanner. Hip cartilage data were insufficient for pooling. Secondary outcomes synthesised narratively suggest knee cartilage recovers within 30 min of walking and 90 min of 100 knee bends. We found contrasting effects of simulated standing and walking in adults with, or at risk of, OA. An increase of 10 knee bend repetitions was associated with 2% greater reduction in patellar thickness or volume. CONCLUSION: There is very low certainty evidence that minimal knee cartilage thickness and volume and composition (T2 relaxation time) reductions (0-5%) occur after weightbearing knee bends, simulated standing, walking, hopping/jumping and cycling, and the impact of knee bends may be dose dependent. Our findings provide a framework of cartilage responses to loading in healthy adults which may have utility for clinicians when designing and prescribing rehabilitation programs and providing exercise advice.
RESUMO
Composite tissue injuries (CTIs) in extremities include segmental bone defects (SBDs) and volumetric muscle loss. The objective of this study was to determine if skeletal muscle autografting with minced muscle grafts (MMGs) could improve healing in an SBD and improve muscle function in a porcine CTI model that includes an SBD and adjacent volumetric muscle loss injury. Adult Yucatan Minipigs were stratified into three groups including specimens with an isolated SBD, an SBD with volumetric muscle loss (CTI), and an SBD with volumetric muscle loss treated with MMG (CTI + MMG). Bone healing was quantified with serial x-rays and postmortem computed tomography scanning. Muscle function was quantified with a custom in vivo force transducer. Muscle tissue content was determined by biochemical analyses and histology. Anterior cortex-modified Radiographic Union Score for Tibia fractures (mRUSTs) decreased from 2.7 to 1.9 (p = 0.003) in CTI versus SBD animals. MMG improved anterior mRUST scores to 2.5 in CTI + MMG specimens (p = 0.030 compared to CTI specimens) and overall mRUST scores increased from 9.4 in CTI specimens to 11.1 in CTI + MMG specimens (p = 0.049). Residual strength deficits at euthanasia were 42% in SBD (p < 0.001), 44% in CTI (p < 0.001), and 48% in CTI + MMG (p < 0.001) compared to preoperative values. There were no differences in strength deficits between the three groups. Biochemical and histologic analyses demonstrated scattered differences between the three groups compared to contralateral muscle. MMG improved bone healing. However, the primary cause of muscle dysfunction and biochemical changes was the presence of an SBD. Clinical significance: Early mitigation of SBDs may be necessary to prevent muscle damage and weakness in patients sustaining composite extremity trauma.
Assuntos
Músculo Esquelético , Fraturas da Tíbia , Animais , Suínos , Transplante Autólogo , Porco Miniatura , Músculo Esquelético/fisiologia , Fraturas da Tíbia/patologia , Força Muscular , Consolidação da FraturaRESUMO
INTRODUCTION: Running is one of the most popular recreational activities worldwide, due to its low cost and accessibility. However, little is known about the impact of running on knee joint health in runners with and without a history of knee surgery. The primary aim of this longitudinal cohort study is to compare knee joint structural features on MRI and knee symptoms at baseline and 4-year follow-up in runners with and without a history of knee surgery. Secondary aims are to explore the relationships between training load exposures (volume and/or intensity) and changes in knee joint structure and symptoms over 4 years; explore the relationship between baseline running biomechanics, and changes in knee joint structure and symptoms over 4 years. In addition, we will explore whether additional variables confound, modify or mediate these associations, including sex, baseline lower-limb functional performance, knee muscle strength, psychological and sociodemographic factors. METHODS AND ANALYSIS: A convenience sample of at least 200 runners (sex/gender balanced) with (n=100) and without (n=100) a history of knee surgery will be recruited. Primary outcomes will be knee joint health (MRI) and knee symptoms (baseline; 4 years). Exposure variables for secondary outcomes include training load exposure, obtained daily throughout the study from wearable devices and three-dimensional running biomechanics (baseline). Additional variables include lower limb functional performance, knee extensor and flexor muscle strength, biomarkers, psychological and sociodemographic factors (baseline). Knowledge and beliefs about osteoarthritis will be obtained through predefined questions and semi-structured interviews with a subset of participants. Multivariable logistic and linear regression models, adjusting for potential confounding factors, will explore changes in knee joint structural features and symptoms, and the influence of potential modifiers and mediators. ETHICS AND DISSEMINATION: Approved by the La Trobe University Ethics Committee (HEC-19524). Findings will be disseminated to stakeholders, peer-review journals and conferences.
Assuntos
Osteoartrite do Joelho , Osteoartrite , Humanos , Estudos Longitudinais , Estudos Prospectivos , Articulação do Joelho/diagnóstico por imagem , Extremidade Inferior , Osteoartrite do Joelho/diagnóstico por imagemRESUMO
OBJECTIVE: Bone stress injuries (BSIs) are classified in clinical practice as being at low- or high-risk for complication based on the injury location. However, this dichotomous approach has not been sufficiently validated. The purpose of this systematic review was to examine the prognostic role of injury location on return-to-sport (RTS) and treatment complications after BSI of the lower extremity and pelvis. DESIGN: Systematic review and meta-analysis. DATA SOURCES: PubMed, Web of Science, Cochrane CENTRAL and Google Scholar databases were searched from database inception to December 2021. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Peer-reviewed studies that reported site-specific RTS of BSIs in athletes. RESULTS: Seventy-six studies reporting on 2974 BSIs were included. Sixteen studies compared multiple injury sites, and most of these studies (n=11) described the anatomical site of injury as being prognostic for RTS or the rate of treatment complication. Pooled data revealed the longest time to RTS for BSIs of the tarsal navicular (127 days; 95% CI 102 to 151 days) and femoral neck (107 days; 95% CI 79 to 135 days) and shortest duration of time for BSIs of the posteromedial tibial shaft (44 days, 95% CI 27 to 61 days) and fibula (56 days; 95% CI 13 to 100 days). Overall, more than 90% of athletes successfully returned to sport. Treatment complication rate was highest in BSIs of the femoral neck, tarsal navicular, anterior tibial shaft and fifth metatarsal; and lowest in the fibula, pubic bone and posteromedial tibial shaft. CONCLUSION: This systematic review supports that the anatomical site of BSIs influences RTS timelines and the risk of complication. BSIs of the femoral neck, anterior tibial shaft and tarsal navicular are associated with increased rates of complications and more challenging RTS. PROSPERO REGISTRATION NUMBER: CRD42021232351.
Assuntos
Volta ao Esporte , Esportes , Humanos , Atletas , PrognósticoRESUMO
INTRODUCTION: Segmental bone defects (SBDs) are devastating injuries sustained by warfighters and are difficult to heal. Preclinical models that accurately simulate human conditions are necessary to investigate therapies to treat SBDs. We have developed two novel porcine SBD models that take advantage of similarities in bone healing and immunologic response to injury between pigs and humans. The purpose of this study was to investigate the efficacy of Bone Morphogenetic Protein-2 (BMP-2) to heal a critical sized defect (CSD) in two novel porcine SBD models. MATERIALS AND METHODS: Two CSDs were performed in Yucatan Minipigs including a 25.0-mm SBD treated with intramedullary nailing (IMN) and a 40.0-mm SBD treated with dual plating (ORIF). In control animals, the defect was filled with a custom spacer and a bovine collagen sponge impregnated with saline (IMN25 Cont, n = 8; ORIF40 Cont, n = 4). In experimental animals, the SBD was filled with a custom spacer and a bovine collage sponge impregnated with human recombinant BMP-2 (IMN25 BMP, n = 8; ORIF40 BMP, n = 4). Healing was quantified using monthly modified Radiographic Union Score for Tibia Fractures (mRUST) scores, postmortem CT scanning, and torsion testing. RESULTS: BMP-2 restored bone healing in all eight IMN25 BMP specimens and three of four ORIF40 BMP specimens. None of the IMN25 Cont or ORIF40 Cont specimens healed. mRUST scores at the time of sacrifice increased from 9.2 (±2.4) in IMN25 Cont to 15.1 (±1.0) in IMN25 BMP specimens (P < .0001). mRUST scores increased from 8.2 (±1.1) in ORIF40 Cont to 14.3 (±1.0) in ORIF40 BMP specimens (P < .01). CT scans confirmed all BMP-2 specimens had healed and none of the control specimens had healed in both IMN and ORIF groups. BMP-2 restored 114% and 93% of intact torsional stiffness in IMN25 BMP and ORIF40 BMP specimens. CONCLUSIONS: We have developed two porcine CSD models, including fixation with IMN and with dual-plate fixation. Porcine models are particularly relevant for SBD research as the porcine immunologic response to injury closely mimics the human response. BMP-2 restored healing in both CSD models, and the effects were evident within the first month after injury. These findings support the use of both porcine CSD models to investigate new therapies to heal SBDs.
Assuntos
Fixação Intramedular de Fraturas , Cicatrização , Humanos , Animais , Bovinos , Suínos , Porco Miniatura , Cicatrização/fisiologia , Fixação Interna de FraturasRESUMO
Introduction: High-resolution peripheral quantitative computed tomography (HR-pQCT) is a powerful tool that has revolutionized 3D longitudinal assessment of bone microarchitecture. However, cortical porosity, a common characteristic of cortical bone loss, is still often determined by static evaluation of overall porosity at one timepoint. Therefore, we sought to 1) describe a technique to evaluate individual cortical pore dynamics in aging females over one year using HR-pQCT imaging and 2) determine whether formation and expansion of pores would exceed contraction and infilling of pores. Methods: HR-pQCT (60.7 µm resolution) images were acquired one year apart at the distal tibia and distal radius in seven female volunteers (60-72 years of age). Baseline and one-year images were registered at each bone site and a custom software was used to quantify dynamic activity of individual cortical pores using the following categories: developed, infilled, expanded, contracted, and static. Results: Over the one-year period, cortical pores actively developed, contracted, expanded, and infilled. More pores expanded and developed vs. infilled or contracted leading to increased pore area in both tibial and radial sites (p = 0.0034 and p = 0.0474, respectively). Closed pores in the tibia, those that were not connected to the endosteal or periosteal surfaces, were the most dynamic of any pores type (open/closed) at either bone site. Conclusion: This study demonstrates an approach to longitudinally track individual cortical pore activity in tibial and radial sites. These data expand conventional parameters for assessing cortical porosity and show increased porosity in one year of aging is caused by newly developed pores and expansion of existing pores.
RESUMO
PURPOSE OF REVIEW: In this review, we discuss the mechanism of action of gabapentinoids and the potential consequences of long-term treatment with these drugs on the musculoskeletal system. RECENT FINDINGS: Gabapentinoids, such as gabapentin (GBP) and pregabalin (PGB) were designed as antiepileptic reagents and are now commonly used as first-line treatment for neuropathic pain and increasingly prescribed off-label for other pain disorders such as migraines and back pain. GBP and PGB exert their analgesic actions by selectively binding the α2δ1 auxiliary subunit of voltage-sensitive calcium channels, thereby inhibiting channel function. Numerous tissues express the α2δ1 subunit where GBP and PGB can alter calcium-mediated signaling events. In tissues such as bone, muscle, and cartilage, α2δ1 has important roles in skeletal formation, mechanosensation, and normal tissue function/repair that may be affected by chronic use of gabapentinoids. Long-term use of gabapentinoids is associated with detrimental musculoskeletal outcomes, including increased fracture risk. Therefore, understanding potential complications is essential for clinicians to guide appropriate treatments.
Assuntos
Cálcio , Humanos , Gabapentina/farmacologia , Ácido gama-Aminobutírico/uso terapêutico , Ácido gama-Aminobutírico/farmacologia , Homeostase , Pregabalina/uso terapêutico , Pregabalina/farmacologiaRESUMO
PURPOSE: Female runners have high rates of bone stress injuries (BSIs), including stress reactions and fractures. The current study explored multidirectional sports (MDS) played when younger as a potential means of building stronger bones to reduce BSI risk in these athletes. METHODS: Female collegiate-level cross-country runners were recruited into groups: 1) RUN, history of training and/or competing in cross-country, recreational running/jogging, swimming, and/or cycling only, and 2) RUN + MDS, additional history of training and/or competing in soccer or basketball. High-resolution peripheral quantitative computed tomography was used to assess the distal tibia, common BSI sites (diaphysis of the tibia, fibula, and second metatarsal), and high-risk BSI sites (base of the second metatarsal, navicular, and proximal diaphysis of the fifth metatarsal). Scans of the radius were used as control sites. RESULTS: At the distal tibia, RUN + MDS ( n = 18) had enhanced cortical area (+17.1%) and thickness (+15.8%), and greater trabecular bone volume fraction (+14.6%) and thickness (+8.3%) compared with RUN ( n = 14; all P < 0.005). Failure load was 19.5% higher in RUN + MDS ( P < 0.001). The fibula diaphysis in RUN + MDS had an 11.6% greater total area and a 11.1% greater failure load (all P ≤ 0.03). At the second metatarsal diaphysis, total area in RUN + MDS was 10.4% larger with greater cortical area and thickness and 18.6% greater failure load (all P < 0.05). RUN + MDS had greater trabecular thickness at the base of the second metatarsal and navicular and greater cortical area and thickness at the proximal diaphysis of the fifth metatarsal (all P ≤ 0.02). No differences were observed at the tibial diaphysis or radius. CONCLUSIONS: These findings support recommendations that athletes delay specialization in running and play MDS when younger to build a more robust skeleton and potentially prevent BSIs.