Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Travel Med ; 31(4)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38630887

RESUMO

BACKGROUND: The international flight network creates multiple routes by which pathogens can quickly spread across the globe. In the early stages of infectious disease outbreaks, analyses using flight passenger data to identify countries at risk of importing the pathogen are common and can help inform disease control efforts. A challenge faced in this modelling is that the latest aviation statistics (referred to as contemporary data) are typically not immediately available. Therefore, flight patterns from a previous year are often used (referred to as historical data). We explored the suitability of historical data for predicting the spatial spread of emerging epidemics. METHODS: We analysed monthly flight passenger data from the International Air Transport Association to assess how baseline air travel patterns were affected by outbreaks of Middle East respiratory syndrome (MERS), Zika and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) over the past decade. We then used a stochastic discrete time susceptible-exposed-infected-recovered (SEIR) metapopulation model to simulate the global spread of different pathogens, comparing how epidemic dynamics differed in simulations based on historical and contemporary data. RESULTS: We observed local, short-term disruptions to air travel from South Korea and Brazil for the MERS and Zika outbreaks we studied, whereas global and longer-term flight disruptions occurred during the SARS-CoV-2 pandemic. For outbreak events that were accompanied by local, small and short-term changes in air travel, epidemic models using historical flight data gave similar projections of the timing and locations of disease spread as when using contemporary flight data. However, historical data were less reliable to model the spread of an atypical outbreak such as SARS-CoV-2, in which there were durable and extensive levels of global travel disruption. CONCLUSION: The use of historical flight data as a proxy in epidemic models is an acceptable practice, except in rare, large epidemics that lead to substantial disruptions to international travel.


Assuntos
Viagem Aérea , COVID-19 , Surtos de Doenças , SARS-CoV-2 , Infecção por Zika virus , Humanos , Viagem Aérea/estatística & dados numéricos , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/prevenção & controle , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/transmissão , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/prevenção & controle , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Viagem/estatística & dados numéricos , Aeronaves , Saúde Global
2.
Lancet Infect Dis ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38040006

RESUMO

The 2023 Marburg virus disease outbreaks in Equatorial Guinea and Tanzania highlighted the importance of better understanding this lethal pathogen. We did a systematic review (PROSPERO CRD42023393345) of peer-reviewed articles reporting historical outbreaks, modelling studies, and epidemiological parameters focused on Marburg virus disease. We searched PubMed and Web of Science from database inception to March 31, 2023. Two reviewers evaluated all titles and abstracts with consensus-based decision making. To ensure agreement, 13 (31%) of 42 studies were double-extracted and a custom-designed quality assessment questionnaire was used for risk of bias assessment. We present detailed information on 478 reported cases and 385 deaths from Marburg virus disease. Analysis of historical outbreaks and seroprevalence estimates suggests the possibility of undetected Marburg virus disease outbreaks, asymptomatic transmission, or cross-reactivity with other pathogens, or a combination of these. Only one study presented a mathematical model of Marburg virus transmission. We estimate an unadjusted, pooled total random effect case fatality ratio of 61·9% (95% CI 38·8-80·6; I2=93%). We identify epidemiological parameters relating to transmission and natural history, for which there are few estimates. This systematic review and the accompanying database provide a comprehensive overview of Marburg virus disease epidemiology and identify key knowledge gaps, contributing crucial information for mathematical models to support future Marburg virus disease epidemic responses.

3.
PLoS One ; 18(10): e0286199, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37851661

RESUMO

Since 8th March 2020 up to the time of writing, we have been producing near real-time weekly estimates of SARS-CoV-2 transmissibility and forecasts of deaths due to COVID-19 for all countries with evidence of sustained transmission, shared online. We also developed a novel heuristic to combine weekly estimates of transmissibility to produce forecasts over a 4-week horizon. Here we present a retrospective evaluation of the forecasts produced between 8th March to 29th November 2020 for 81 countries. We evaluated the robustness of the forecasts produced in real-time using relative error, coverage probability, and comparisons with null models. During the 39-week period covered by this study, both the short- and medium-term forecasts captured well the epidemic trajectory across different waves of COVID-19 infections with small relative errors over the forecast horizon. The model was well calibrated with 56.3% and 45.6% of the observations lying in the 50% Credible Interval in 1-week and 4-week ahead forecasts respectively. The retrospective evaluation of our models shows that simple transmission models calibrated using routine disease surveillance data can reliably capture the epidemic trajectory in multiple countries. The medium-term forecasts can be used in conjunction with the short-term forecasts of COVID-19 mortality as a useful planning tool as countries continue to relax public health measures.


Assuntos
COVID-19 , Epidemias , Humanos , COVID-19/epidemiologia , Estudos Retrospectivos , SARS-CoV-2 , Tempo , Previsões
4.
Epidemics ; 44: 100692, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37399634

RESUMO

The evolution of SARS-CoV-2 has demonstrated that emerging variants can set back the global COVID-19 response. The ability to rapidly assess the threat of new variants is critical for timely optimisation of control strategies. We present a novel method to estimate the effective transmission advantage of a new variant compared to a reference variant combining information across multiple locations and over time. Through an extensive simulation study designed to mimic real-time epidemic contexts, we show that our method performs well across a range of scenarios and provide guidance on its optimal use and interpretation of results. We also provide an open-source software implementation of our method. The computational speed of our tool enables users to rapidly explore spatial and temporal variations in the estimated transmission advantage. We estimate that the SARS-CoV-2 Alpha variant is 1.46 (95% Credible Interval 1.44-1.47) and 1.29 (95% CrI 1.29-1.30) times more transmissible than the wild type, using data from England and France respectively. We further estimate that Delta is 1.77 (95% CrI 1.69-1.85) times more transmissible than Alpha (England data). Our approach can be used as an important first step towards quantifying the threat of emerging or co-circulating variants of infectious pathogens in real-time.


Assuntos
COVID-19 , Epidemias , Humanos , SARS-CoV-2 , COVID-19/epidemiologia , Simulação por Computador
5.
Epidemics ; 42: 100666, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36689876

RESUMO

Reliable estimates of human mobility are important for understanding the spatial spread of infectious diseases and the effective targeting of control measures. However, when modelling infectious disease dynamics, data on human mobility at an appropriate temporal or spatial resolution are not always available, leading to the common use of model-derived mobility proxies. In this study we reviewed the different data sources and mobility models that have been used to characterise human movement in Africa. We then conducted a simulation study to better understand the implications of using human mobility proxies when predicting the spatial spread and dynamics of infectious diseases. We found major gaps in the availability of empirical measures of human mobility in Africa, leading to mobility proxies being used in place of data. Empirical data on subnational mobility were only available for 17/54 countries, and in most instances, these data characterised long-term movement patterns, which were unsuitable for modelling the spread of pathogens with short generation times (time between infection of a case and their infector). Results from our simulation study demonstrated that using mobility proxies can have a substantial impact on the predicted epidemic dynamics, with complex and non-intuitive biases. In particular, the predicted times and order of epidemic invasion, and the time of epidemic peak in different locations can be underestimated or overestimated, depending on the types of proxies used and the country of interest. Our work underscores the need for regularly updated empirical measures of population movement within and between countries to aid the prevention and control of infectious disease outbreaks. At the same time, there is a need to establish an evidence base to help understand which types of mobility data are most appropriate for describing the spread of emerging infectious diseases in different settings.


Assuntos
Doenças Transmissíveis , Epidemias , Humanos , Simulação por Computador , Surtos de Doenças , África , Doenças Transmissíveis/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA