Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Trends Cancer ; 8(6): 482-493, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35193822

RESUMO

Thymidine phosphorylase (TP) catalyzes the reversible phosphorolysis of thymidine, maintaining nucleoside homeostasis for DNA repair and replication. In many cancers TP is expressed at high levels and promotes thymidine catabolism, ultimately generating 2-deoxyribose (2dDR) that can support multiple procancer processes, including glycation of proteins, alternative metabolism, extracellular matrix remodeling, and angiogenesis. Therefore, inhibition of TP is an attractive anticancer strategy; however, an alternative approach that exploits the catalytic activity of TP to activate 5-fluorouracil (5-FU) prodrugs has been clinically successful. Here, we review the structure, function, and regulation of TP, its multiple supporting roles in cancer growth and survival. We summarize TP inhibitor and prodrug development and propose TP-targeting strategies that could potentiate the action of current therapies.


Assuntos
Neoplasias , Timidina Fosforilase , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neovascularização Patológica , Timidina , Timidina Fosforilase/genética , Timidina Fosforilase/metabolismo
3.
Data Brief ; 38: 107433, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34632023

RESUMO

The RSK2 kinase is a downstream effector of the Ras/Raf/MEK/ERK pathway that is aberrantly active in a range of cancer types and has been recognized an anticancer target. The inhibition of RSK2 kinase activity would disrupt multiple pro-cancer processes; however, there are few RSK2 inhibitors. The data have been obtained for a series of pteridinone-, pyrimidine-, purine-, and pyrrolopyrimidine-based compounds, developed to establish a structure-activity relationship for RSK inhibition. The compounds were docked into the ATP-binding site of the N-terminal domain of the RSK2 kinase using Glide. The binding conformations of these molecules was then used to generate a set of pharmacophore models to determine the structural requirements for RSK2 inhibition. Through the combination of these models, common features (pharmacophores) can be identified that can inform the development of further small molecule RSK inhibitors. The synthesis and evaluation of the pteridinone- and pyrimidine-based compounds was reported in the related articles: Substituted pteridinones as p90 ribosomal S6 protein kinase (RSK) inhibitors: A structure-activity study (Casalvieri et al., 2020) and Molecular docking of substituted pteridinones and pyrimidines to the ATP-binding site of the N-terminal domain of RSK2 and associated MM/GBSA and molecular field datasets (Casalvieri et al., 2020). [1], [2]. The synthesis and evaluation of the purine- and pyrrolopyrimidine-based compounds was reported in the related research article: N-substituted pyrrolopyrimidines and purines as p90 ribosomal S6 protein kinase-2 (RSK2) inhibitors (Casalvieri et al., 2021) [3].

4.
ACS Chem Neurosci ; 12(18): 3477-3486, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34472849

RESUMO

A number of studies have shown high levels of thymidine phosphorylase (TP) expression in glioblastoma (GBM), with trace or undetectable TP levels in normal developed brain tissue. TP catalyzes the reversible phosphorolysis of thymidine to thymine and 2-deoxyribose-1-phosphate, maintaining nucleoside homeostasis for efficient DNA replication and cell division. The TP-mediated catabolism of thymidine is responsible for multiple protumor processes and can support angiogenesis, glycation of proteins, and alternative metabolism. In this study, we examined the effect of TP inhibition in GBM using the known nanomolar TP inhibitors 5-chloro-6-[1-(2'-iminopyrrolidin-1'-yl)methyl]uracil (TPI) and the analogous 6-[(2'-aminoimidazol-1'-yl)methyl]uracils. Although these TP inhibitors did not demonstrate any appreciable cytotoxicity in GBM cell lines as single agents, they did enhance the cytotoxicity of temozolomide (TMZ). This pontetiated action of TMZ by TP inhibition may be due to limiting the availability of thymine for DNA repair and replication. These studies support that TP inhibitors could be used as chemosensitizing agents in GBM to improve the efficacy of TMZ.


Assuntos
Glioblastoma , Timidina Fosforilase , Linhagem Celular , Glioblastoma/tratamento farmacológico , Humanos , Temozolomida/farmacologia , Uracila
5.
Bioorg Med Chem ; 41: 116220, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34034149

RESUMO

The RSK2 kinase is the downstream effector of the Ras/Raf/MEK/ERK pathway, that is often aberrantly activated in acute myeloid leukemia (AML). Recently, we reported a structure-activity study for BI-D1870, the pan-RSK inhibitor, and identified pteridinones that inhibited cellular RSK2 activity that did not result in concomitant cytotoxicity. In the current study, we developed a series of pyrrolopyrimidines and purines to replace the pteridinone ring of BI-D1870, with a range of N-substituents that extend to the substrate binding site to probe complementary interactions, while retaining the 2,6-difluorophenol-4-amino group to maintain interactions with the hinge domain and the DFG motif. Several compounds inhibited cellular RSK2 activity, and we identified compounds that uncoupled cellular RSK2 inhibition from potent cytotoxicity in the MOLM-13 AML cell line. These N-substituted probes have revealed an opportunity to further examine substituents that extend from the ATP- to the substrate-binding site may confer improved RSK potency and selectivity.


Assuntos
Inibidores Enzimáticos/farmacologia , Purinas/química , Purinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Pirróis/química , Pirróis/farmacologia , Proteínas Quinases S6 Ribossômicas 90-kDa/antagonistas & inibidores , Domínio Catalítico , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
6.
Nat Commun ; 10(1): 4724, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31624313

RESUMO

Acetylation of histone H3K23 has emerged as an essential posttranslational modification associated with cancer and learning and memory impairment, yet our understanding of this epigenetic mark remains insufficient. Here, we identify the native MORF complex as a histone H3K23-specific acetyltransferase and elucidate its mechanism of action. The acetyltransferase function of the catalytic MORF subunit is positively regulated by the DPF domain of MORF (MORFDPF). The crystal structure of MORFDPF in complex with crotonylated H3K14 peptide provides mechanistic insight into selectivity of this epigenetic reader and its ability to recognize both histone and DNA. ChIP data reveal the role of MORFDPF in MORF-dependent H3K23 acetylation of target genes. Mass spectrometry, biochemical and genomic analyses show co-existence of the H3K23ac and H3K14ac modifications in vitro and co-occupancy of the MORF complex, H3K23ac, and H3K14ac at specific loci in vivo. Our findings suggest a model in which interaction of MORFDPF with acylated H3K14 promotes acetylation of H3K23 by the native MORF complex to activate transcription.


Assuntos
Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Acilação , Sítios de Ligação/genética , Linhagem Celular Tumoral , Cristalografia por Raios X , Células HEK293 , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Histonas/química , Humanos , Células K562 , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos
7.
PLoS One ; 12(4): e0176229, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28437473

RESUMO

RNA aptamers are oligonucleotides that bind with high specificity and affinity to target ligands. In the absence of bound ligand, secondary structures of RNA aptamers are generally stable, but single-stranded and loop regions, including ligand binding sites, lack defined structures and exist as ensembles of conformations. For example, the well-characterized theophylline-binding aptamer forms a highly stable binding site when bound to theophylline, but the binding site is unstable and disordered when theophylline is absent. Experimental methods have not revealed at atomic resolution the conformations that the theophylline aptamer explores in its unbound state. Consequently, in the present study we applied 21 microseconds of molecular dynamics simulations to structurally characterize the ensemble of conformations that the aptamer adopts in the absence of theophylline. Moreover, we apply Markov state modeling to predict the kinetics of transitions between unbound conformational states. Our simulation results agree with experimental observations that the theophylline binding site is found in many distinct binding-incompetent states and show that these states lack a binding pocket that can accommodate theophylline. The binding-incompetent states interconvert with binding-competent states through structural rearrangement of the binding site on the nanosecond to microsecond timescale. Moreover, we have simulated the complete theophylline binding pathway. Our binding simulations supplement prior experimental observations of slow theophylline binding kinetics by showing that the binding site must undergo a large conformational rearrangement after the aptamer and theophylline form an initial complex, most notably, a major rearrangement of the C27 base from a buried to solvent-exposed orientation. Theophylline appears to bind by a combination of conformational selection and induced fit mechanisms. Finally, our modeling indicates that when Mg2+ ions are present the population of binding-competent aptamer states increases more than twofold. This population change, rather than direct interactions between Mg2+ and theophylline, accounts for altered theophylline binding kinetics.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Simulação de Dinâmica Molecular , Teofilina/química , Sítios de Ligação , Magnésio/química , Cadeias de Markov
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA