Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 206(3): e0038223, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38411048

RESUMO

Hemolytic phospholipase C, PlcH, is an important virulence factor for Pseudomonas aeruginosa. PlcH preferentially hydrolyzes sphingomyelin and phosphatidylcholine, and this hydrolysis activity drives tissue damage and inflammation and interferes with the oxidative burst of immune cells. Among other contributors, transcription of plcH was previously shown to be induced by phosphate starvation via PhoB and the choline metabolite, glycine betaine, via GbdR. Here, we show that sphingosine can induce plcH transcription and result in secreted PlcH enzyme activity. This induction is dependent on the sphingosine-sensing transcriptional regulator SphR. The SphR induction of plcH occurs from the promoter for the gene upstream of plcH that encodes the neutral ceramidase, CerN, and transcriptional readthrough of the cerN transcription terminator. Evidence for these conclusions came from mutation of the SphR binding site in the cerN promoter, mutation of the cerN terminator, enhancement of cerN termination by adding the rrnB terminator, and reverse transcriptase PCR (RT-PCR) showing that the intergenic region between cerN and plcH is made as RNA during sphingosine, but not choline, induction. We also observed that, like glycine betaine induction, sphingosine induction of plcH is under catabolite repression control, which likely explains why such induction was not seen in other studies using sphingosine in rich media. The addition of sphingosine as a novel inducer for PlcH points to the regulation of plcH transcription as a site for the integration of multiple host-derived signals. IMPORTANCE: PlcH is a secreted phospholipase C/sphingomyelinase that is important for the virulence of Pseudomonas aeruginosa. Here, we show that sphingosine, which presents itself or as a product of P. aeruginosa sphingomyelinase and ceramidase activity, leads to the induction of plcH transcription. This transcriptional induction occurs from the promoter of the upstream ceramidase gene generating a conditional operon. The transcript on which plcH resides, therefore, is different depending on which host molecule or condition leads to induction, and this may have implications for PlcH post-transcriptional regulation. This work also adds to our understanding of P. aeruginosa with host-derived sphingolipids.


Assuntos
Betaína , Pseudomonas aeruginosa , Betaína/metabolismo , Pseudomonas aeruginosa/metabolismo , Esfingosina/metabolismo , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo , Ceramidases/metabolismo
2.
PLoS Comput Biol ; 19(11): e1011624, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37992129

RESUMO

Despite significant progress in recent decades toward ameliorating the excess burden of diarrheal disease globally, childhood diarrhea remains a leading cause of morbidity and mortality in low-and-middle-income countries (LMICs). Recent large-scale studies of diarrhea etiology in these populations have revealed widespread co-infection with multiple enteric pathogens, in both acute and asymptomatic stool specimens. We applied methods from network science and ecology to better understand the underlying structure of enteric co-infection among infants in two large longitudinal birth cohorts in Bangladesh. We used a configuration model to establish distributions of expected random co-occurrence, based on individual pathogen prevalence alone, for every pathogen pair among 30 enteropathogens detected by qRT-PCR in both diarrheal and asymptomatic stool specimens. We found two pairs, Enterotoxigenic E. coli (ETEC) with Enteropathogenic E. coli (EPEC), and ETEC with Campylobacter spp., co-infected significantly more than expected at random (both pairs co-occurring almost 4 standard deviations above what one could expect due to chance alone). Furthermore, we found a general pattern that bacteria-bacteria pairs appear together more frequently than expected at random, while virus-bacteria pairs tend to appear less frequently than expected based on model predictions. Finally, infants co-infected with leading bacteria-bacteria pairs had more days of diarrhea in the first year of life compared to infants without co-infection (p-value <0.0001). Our methods and results help us understand the structure of enteric co-infection which can guide further work to identify and eliminate common sources of infection or determine biologic mechanisms that promote co-infection.


Assuntos
Coinfecção , Infecções por Escherichia coli , Humanos , Lactente , Criança , Escherichia coli , Coinfecção/epidemiologia , Diarreia/epidemiologia , Diarreia/microbiologia , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Bactérias , Fezes/microbiologia
3.
Neurogastroenterol Motil ; 35(10): e14629, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37357378

RESUMO

BACKGROUND: An emerging strategy to treat symptoms of gastrointestinal (GI) dysmotility utilizes the administration of isolated bacteria. However, the underlying mechanisms of action of these bacterial agents are not well established. Here, we elucidate a novel approach to promote intestinal motility by exploiting the biochemical capability of specific bacteria to produce the serotonin (5-HT) precursor, tryptophan (Trp). METHODS: Mice were treated daily for 1 week by oral gavage of Bacillus (B.) subtilis (R0179), heat-inactivated R0179, or a tryptophan synthase-null strain of B. subtilis (1A2). Tissue levels of Trp, 5-HT, and 5-hydroxyindoleacetic acid (5-HIAA) were measured and changes in motility were evaluated. KEY RESULTS: Mice treated with B. subtilis R0179 exhibited greater colonic tissue levels of Trp and the 5-HT breakdown product, 5-HIAA, compared to vehicle-treated mice. Furthermore, B. subtilis treatment accelerated colonic motility in both healthy mice as well as in a mouse model of constipation. These effects were not observed with heat-inactivated R0179 or the live 1A2 strain that does not express tryptophan synthase. Lastly, we found that the prokinetic effects of B. subtilis R0179 were blocked by coadministration of a 5-HT4 receptor (5-HT4 R) antagonist and were absent in 5-HT4 R knockout mice. CONCLUSIONS AND INFERENCES: Taken together, these data demonstrate that intestinal motility can be augmented by treatment with bacteria that synthesize Trp, possibly through increased 5-HT signaling and/or actions of Trp metabolites, and involvement of the 5-HT4 R. Our findings provide mechanistic insight into a transient and predictable bacterial strategy to promote GI motility.


Assuntos
Triptofano Sintase , Triptofano , Camundongos , Animais , Triptofano/farmacologia , Serotonina/metabolismo , Ácido Hidroxi-Indolacético , Triptofano Sintase/farmacologia , Motilidade Gastrointestinal , Camundongos Knockout , Bactérias
4.
Mol Oral Microbiol ; 38(3): 237-250, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36871155

RESUMO

Aggregatibacter actinomycetemcomitans is a gram-negative bacterium associated with periodontal disease and a variety of disseminated extra-oral infections. Tissue colonization is mediated by fimbriae and non-fimbriae adhesins resulting in the formation of a sessile bacterial community or biofilm, which confers enhanced resistance to antibiotics and mechanical removal. The environmental changes experienced by A. actinomycetemcomitans during infection are detected and processed by undefined signaling pathways that alter gene expression. In this study, we have characterized the promoter region of the extracellular matrix protein adhesin A (EmaA), which is an important surface adhesin in biofilm biogenesis and disease initiation using a series of deletion constructs consisting of the emaA intergenic region and a promotor-less lacZ sequence. Two regions of the promoter sequence were found to regulate gene transcription and in silico analysis indicated the presence of multiple transcriptional regulatory binding sequences. Analysis of four regulatory elements, CpxR, ArcA, OxyR, and DeoR, was undertaken in this study. Inactivation of arcA, the regulator moiety of the ArcAB two-component signaling pathway involved in redox homeostasis, resulted in a decrease in EmaA synthesis and biofilm formation. Analysis of the promoter sequences of other adhesins identified binding sequences for the same regulatory proteins, which suggests that these proteins are involved in the coordinate regulation of adhesins required for colonization and pathogenesis.


Assuntos
Adesinas Bacterianas , Aggregatibacter actinomycetemcomitans , Aggregatibacter actinomycetemcomitans/metabolismo , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Biofilmes , Ligação Proteica , Antibacterianos
5.
Microbiol Spectr ; : e0410522, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744887

RESUMO

Ralstonia insidiosa and Chryseobacterium gleum are bacterial species commonly found in potable water systems, and these two species contribute to the robustness of biofilm formation in a model six-species community from the International Space Station (ISS) potable water system. Here, we set about characterizing the interaction between these two ISS-derived strains and examining the extent to which this interaction extends to other strains and species in these two genera. The enhanced biofilm formation between the ISS strains of R. insidiosa and C. gleum is robust to starting inoculum and temperature and occurs in some but not all tested growth media, and evidence does not support a soluble mediator or coaggregation mechanism. These findings shed light on the ISS R. insidiosa and C. gleum interaction, though such enhancement is not common between these species based on our examination of other R. insidiosa and C. gleum strains, as well as other species of Ralstonia and Chryseobacterium. Thus, while the findings presented here increase our understanding of the ISS potable water model system, not all our findings are broadly extrapolatable to strains found outside of the ISS. IMPORTANCE Biofilms present in drinking water systems and terminal fixtures are important for human health, pipe corrosion, and water taste. Here, we examine the enhanced biofilm of cocultures for two very common bacteria from potable water systems: Ralstonia insidiosa and Chryseobacterium gleum. While strains originally isolated on the International Space Station show enhanced dual-species biofilm formation, terrestrial strains do not show the same interaction properties. This study contributes to our understanding of these two species in both dual-culture and monoculture biofilm formation.

6.
Microbiome ; 10(1): 198, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36419205

RESUMO

BACKGROUND: Dysregulation of gut microbiota-associated tryptophan metabolism has been observed in patients with multiple sclerosis. However, defining direct mechanistic links between this apparent metabolic rewiring and individual constituents of the gut microbiota remains challenging. We and others have previously shown that colonization with the gut commensal and putative probiotic species, Lactobacillus reuteri, unexpectedly enhances host susceptibility to experimental autoimmune encephalomyelitis (EAE), a murine model of multiple sclerosis. To identify underlying mechanisms, we characterized the genome of commensal L. reuteri isolates, coupled with in vitro and in vivo metabolomic profiling, modulation of dietary substrates, and gut microbiota manipulation. RESULTS: The enzymes necessary to metabolize dietary tryptophan into immunomodulatory indole derivatives were enriched in the L. reuteri genomes, including araT, fldH, and amiE. Moreover, metabolite profiling of L. reuteri monocultures and serum of L. reuteri-colonized mice revealed a depletion of kynurenines and production of a wide array of known and novel tryptophan-derived aryl hydrocarbon receptor (AhR) agonists and antagonists, including indole acetate, indole-3-glyoxylic acid, tryptamine, p-cresol, and diverse imidazole derivatives. Functionally, dietary tryptophan was required for L. reuteri-dependent EAE exacerbation, while depletion of dietary tryptophan suppressed disease activity and inflammatory T cell responses in the CNS. Mechanistically, L. reuteri tryptophan-derived metabolites activated the AhR and enhanced T cell production of IL-17. CONCLUSIONS: Our data suggests that tryptophan metabolism by gut commensals, such as the putative probiotic species L. reuteri, can unexpectedly enhance autoimmunity, inducing broad shifts in the metabolome and immunological repertoire. Video Abstract.


Assuntos
Limosilactobacillus reuteri , Esclerose Múltipla , Camundongos , Animais , Limosilactobacillus reuteri/genética , Limosilactobacillus reuteri/metabolismo , Autoimunidade , Triptofano/metabolismo , Indóis
7.
Microbiology (Reading) ; 168(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35266867

RESUMO

Glutamine amidotransferase-1 domain-containing AraC-family transcriptional regulators (GATRs) are present in the genomes of many bacteria, including all Pseudomonas species. The involvement of several characterized GATRs in amine-containing compound metabolism has been determined, but the full scope of GATR ligands and regulatory networks are still unknown. Here, we characterize Pseudomonas putida's detection of the animal-derived amine compound creatine, a compound particularly enriched in muscle and ciliated cells by a creatine-specific GATR, PP_3665, here named CahR (Creatine amidohydrolase Regulator). cahR is necessary for transcription of the gene encoding creatinase (PP_3667/creA) in the presence of creatine and is critical for P. putida's ability to utilize creatine as a sole source of nitrogen. The CahR/creatine regulon is small, and an electrophoretic mobility shift assay demonstrates strong and specific CahR binding only at the creA promoter, supporting the conclusion that much of the regulon is dependent on downstream metabolites. Phylogenetic analysis of creA orthologues associated with cahR orthologues highlights a strain distribution and organization supporting probable horizontal gene transfer, particularly evident within the genus Acinetobacter. This study identifies and characterizes the GATR that transcriptionally controls P. putida's metabolism of creatine, broadening the scope of known GATR ligands and suggesting GATR diversification during evolution of metabolism for aliphatic nitrogen compounds.


Assuntos
Pseudomonas putida , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Creatina/genética , Creatina/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitrogênio/metabolismo , Filogenia , Regiões Promotoras Genéticas , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
8.
Physiol Rep ; 9(22): e15116, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34822216

RESUMO

Obesity alters the risks and outcomes of inflammatory lung diseases. It is important to accurately recapitulate the obese state in animal models to understand these effects on the pathogenesis of disease. Diet-induced obesity is a commonly used model of obesity, but when applied to other disease models like acute respiratory distress syndrome, pneumonia, and asthma, it yields widely divergent. We hypothesized high-fat chow storage conditions would affect lipid oxidation and inflammatory response in the lungs of lipopolysaccharide (LPS)-challenged mice. For 6 weeks, C57BL/6crl mice were fed either a 10% (low-fat diet, LFD) or 60% (high-fat diet, HFD) stored at room temperature (RT, 23°C) for up to 7, 14, 21, or 42 days. Mice were treated with nebulized LPS to induce lung inflammation, and neutrophil levels in bronchoalveolar lavage were determined 24 h later. Lipid oxidation (malondialdehyde, MDA) was assayed by thiobarbituric acid reactive substances in chow and mouse plasma. Concentrations of MDA in chow and plasma rose in proportion to the duration of RT chow storage. Mice fed a HFD stored <2 weeks at RT had an attenuated response 24 h after LPS compared with mice fed an LFD. This effect was reversed after 2 weeks of chow storage at RT. Chow stored above freezing underwent lipid oxidation associated with significant alterations in the LPS-induced pulmonary inflammatory response. Our data show that storage conditions affect lipid peroxidation, which in turn affects pulmonary inflammatory responses in a mouse model of disease. It also suggests changes in the microbiome, although not significantly different suggests decreased variety and richness of bacteria in the gut, a large aspect of the immune system. Dietary composition and storage of chow may also affect pulmonary inflammation and the gut microbiome in humans.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Ração Animal , Dieta Hiperlipídica , Armazenamento de Alimentos , Inflamação/metabolismo , Malondialdeído/metabolismo , Obesidade/metabolismo , Pneumonia/metabolismo , Temperatura , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/microbiologia , Animais , Dieta com Restrição de Gorduras , Modelos Animais de Doenças , Microbioma Gastrointestinal , Inflamação/microbiologia , Metabolismo dos Lipídeos , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/microbiologia , Pneumonia/induzido quimicamente , Pneumonia/microbiologia
9.
J Phys Chem Lett ; 11(21): 9501-9506, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33108730

RESUMO

By integrating various simulation and experimental techniques, we discovered that antimicrobial peptides (AMPs) may achieve synergy at an optimal concentration and ratio, which can be caused by aggregation of the synergistic peptides. On multiple time and length scales, our studies obtain novel evidence of how peptide coaggregation in solution can affect the disruption of membranes by synergistic AMPs. Our findings provide crucial details about the complex molecular origins of AMP synergy, which will help guide the future development of synergistic AMPs as well as applications of anti-infective peptide cocktail therapies.


Assuntos
Anti-Infecciosos/química , Proteínas Citotóxicas Formadoras de Poros/química , Sequência de Aminoácidos , Anti-Infecciosos/farmacologia , Apoptose/efeitos dos fármacos , Membrana Externa Bacteriana/efeitos dos fármacos , Sinergismo Farmacológico , Escherichia coli , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Agregados Proteicos , Conformação Proteica
10.
Am J Physiol Lung Cell Mol Physiol ; 319(6): L908-L925, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32901521

RESUMO

Growing evidence demonstrates that human mesenchymal stromal cells (MSCs) modify their in vivo anti-inflammatory actions depending on the specific inflammatory environment encountered. Understanding this better is crucial to refine MSC-based cell therapies for lung and other diseases. Using acute exacerbations of cystic fibrosis (CF) lung disease as a model, the effects of ex vivo MSC exposure to clinical bronchoalveolar lavage fluid (BALF) samples, as a surrogate for the in vivo clinical lung environment, on MSC viability, gene expression, secreted cytokines, and mitochondrial function were compared with effects of BALF collected from healthy volunteers. CF BALF samples that cultured positive for Aspergillus sp. (Asp) induced rapid MSC death, usually within several hours of exposure. Further analyses suggested the fungal toxin gliotoxin as a potential mediator contributing to CF BALF-induced MSC death. RNA sequencing analyses of MSCs exposed to either Asp+ or Asp- CF BALF samples identified a number of differentially expressed transcripts, including those involved in interferon signaling, antimicrobial gene expression, and cell death. Toxicity did not correlate with bacterial lung infections. These results suggest that the potential use of MSC-based cell therapies for CF or other lung diseases may not be warranted in the presence of Aspergillus.


Assuntos
Anti-Inflamatórios/uso terapêutico , Fibrose Cística/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Líquido da Lavagem Broncoalveolar/microbiologia , Fibrose Cística/metabolismo , Humanos , Pulmão/metabolismo , Pulmão/microbiologia , Transplante de Células-Tronco Mesenquimais/métodos
11.
Bull Math Biol ; 82(2): 27, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32008118

RESUMO

Bacterial biofilms play a critical role in environmental processes, water treatment, human health, and food processing. They exhibit highly complex dynamics due to the interactions between the bacteria and the extracellular polymeric substance (EPS), water, and nutrients and minerals that make up the biofilm. We present a hybrid computational model in which the dynamics of discrete bacterial cells are simulated within a multiphase continuum, consisting of EPS and water as separate interacting phases, through which nutrients and minerals diffuse. Bacterial cells in our model consume water and nutrients in order to grow, divide, and produce EPS. Consequently, EPS flows outward from the bacterial colony, while water flows inward. The model predicts bacterial colony formation as a treelike structure. The distribution of bacterial growth and EPS production is found to be sensitive to the pore spacing between bacteria and the consumption of nutrients within the bacterial colony. Forces that are sometimes neglected in biofilm simulations, such as lubrication force between nearby bacterial cells and osmotic (swelling) pressure force resulting from gradients in EPS concentration, are observed to have an important effect on biofilm growth via their influence on bacteria pore spacing and associated water/nutrient percolation into the bacterial colony.


Assuntos
Biofilmes/crescimento & desenvolvimento , Modelos Biológicos , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Fenômenos Biomecânicos , Biologia Computacional , Simulação por Computador , Módulo de Elasticidade , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Humanos , Imageamento Tridimensional , Conceitos Matemáticos , Biologia de Sistemas , Viscosidade , Água/metabolismo
12.
Microbiology (Reading) ; 166(1): 34-43, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31585061

RESUMO

Microbial biofilms are ubiquitous in drinking water systems, yet our understanding of drinking water biofilms lags behind our understanding of those in other environments. Here, a six-member model bacterial community was used to identify the interactions and individual contributions of each species to community biofilm formation. These bacteria were isolated from the International Space Station potable water system and include Cupriavidus metallidurans, Chryseobacterium gleum, Ralstonia insidiosa, Ralstonia pickettii, Methylorubrum (Methylobacterium) populi and Sphingomonas paucimobilis, but all six species are common members of terrestrial potable water systems. Using reconstituted assemblages, from pairs to all 6 members, community biofilm formation was observed to be robust to the absence of any single species and only removal of the C. gleum/S. paucimobilis pair, out of all 15 possible 2-species subtractions, led to loss of community biofilm formation. In conjunction with these findings, dual-species biofilm formation assays supported the view that the contribution of C. gleum to community biofilm formation was dependent on synergistic biofilm formation with either R. insidiosa or C. metallidurans. These data support a model of multiple, partially redundant species interactions to generate robustness in biofilm formation. A bacteriophage and multiple predatory bacteria were used to test the resilience of the community to the removal of individual members in situ, but the combination of precise and substantial depletion of a single target species was not achievable. We propose that this assemblage can be used as a tractable model to understand the molecular bases of the interactions described here and to decipher other functions of drinking water biofilms.


Assuntos
Biofilmes/crescimento & desenvolvimento , Água Potável/microbiologia , Interações Microbianas/fisiologia , Microbiota , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Bactérias/virologia , Bacteriófagos/fisiologia , Astronave , Microbiologia da Água
13.
Am J Physiol Lung Cell Mol Physiol ; 317(6): L823-L831, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31553626

RESUMO

Mesenchymal stromal (stem) cells (MSCs) are increasingly demonstrated to ameliorate experimentally induced lung injuries through disease-specific anti-inflammatory actions, thus suggesting that different in vivo inflammatory environments can influence MSC actions. To determine the effects of different representative inflammatory lung conditions, human bone marrow-derived MSCs (hMSCs) were exposed to in vitro culture conditions from bronchoalveolar lavage fluid (BALF) samples obtained from patients with either the acute respiratory distress syndrome (ARDS) or with other lung diseases including acute respiratory exacerbations of cystic fibrosis (CF) (non-ARDS). hMSCs were subsequently assessed for time- and BALF concentration-dependent effects on mRNA expression of selected pro- and anti-inflammatory mediators, and for overall patterns of gene and mRNA expression. Both common and disease-specific patterns were observed in gene expression of different hMSC mediators, notably interleukin (IL)-6. Conditioned media obtained from non-ARDS BALF-exposed hMSCs was more effective in promoting an anti-inflammatory phenotype in monocytes than was conditioned media from ARDS BALF-exposed hMSCs. Neutralizing IL-6 in the conditioned media promoted generation of anti-inflammatory monocyte phenotype. This proof of concept study suggest that different lung inflammatory environments potentially can alter hMSC behaviors. Further identification of these interactions and the driving mechanisms may influence clinical use of MSCs for treating lung diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Líquido da Lavagem Broncoalveolar/química , Meios de Cultivo Condicionados/farmacologia , Fibrose Cística/terapia , Células-Tronco Mesenquimais/citologia , Pneumonia/terapia , Síndrome do Desconforto Respiratório/terapia , Fibrose Cística/imunologia , Fibrose Cística/patologia , Humanos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Pneumonia/imunologia , Pneumonia/patologia , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia
14.
mBio ; 10(3)2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164466

RESUMO

People with cystic fibrosis are susceptible to lung infections from a variety of bacteria, a number of which also reside in the potable water system, including Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Achromobacter xylosoxidans, Burkholderia cepacia complex, and nontuberculosis Mycobacteria Here, I propose chemical and physical aspects of the potable water system along with bacterial lifestyle strategies in this system that may enhance successful colonization of cystic fibrosis lungs by these bacteria, including iron and copper levels, lipids, and low growth rates within low-oxygen biofilms.


Assuntos
Bactérias/isolamento & purificação , Fibrose Cística/microbiologia , Água Potável/microbiologia , Pulmão/microbiologia , Biofilmes , Burkholderia cepacia , Cobre , Humanos , Ferro , Lipídeos , Pseudomonas aeruginosa , Stenotrophomonas maltophilia
15.
J Bacteriol ; 201(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31109991

RESUMO

Stenotrophomonas maltophilia is a Gram-negative opportunistic pathogen that can infect the lungs of people with cystic fibrosis (CF). The highly viscous mucus in the CF lung, expectorated as sputum, serves as the primary nutrient source for microbes colonizing this site and induces virulence-associated phenotypes and gene expression in several CF pathogens. Here, we characterized the transcriptional responses of three S. maltophilia strains during exposure to synthetic CF sputum medium (SCFM2) to gain insight into how this organism interacts with the host in the CF lung. These efforts led to the identification of 881 transcripts differentially expressed by all three strains, many of which reflect the metabolic pathways used by S. maltophilia in sputum, as well as altered stress responses. The latter correlated with increased resistance to peroxide exposure after pregrowth in SCFM2 for two of the strains. We also compared the SCFM2 transcriptomes of two S. maltophilia CF isolates to that of the acute infection strain, S. maltophilia K279a, allowing us to identify CF isolate-specific signatures in differential gene expression. The expression of genes from the accessory genomes was also differentially altered in response to SCFM2. Finally, a number of biofilm-associated genes were differentially induced in SCFM2, particularly in K279a, which corresponded to increased aggregation and biofilm formation in this strain relative to both CF strains. Collectively, this work details the response of S. maltophilia to an environment that mimics important aspects of the CF lung, identifying potential survival strategies and metabolic pathways used by S. maltophilia during infections.IMPORTANCEStenotrophomonas maltophilia is an important infecting bacterium in the airways of people with cystic fibrosis (CF). However, compared to the other CF pathogens, S. maltophilia has been relatively understudied. The significance of our research is to provide insight into the global transcriptomic changes of S. maltophilia in response to a medium that was designed to mimic important aspects of the CF lung. This study elucidates the overall metabolic changes that occur when S. maltophilia encounters the CF lung and generates a road map of candidate genes to test using in vitro and in vivo models of CF.


Assuntos
Fibrose Cística/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , Escarro/microbiologia , Stenotrophomonas maltophilia/genética , Antibacterianos/farmacologia , Genoma Bacteriano , Humanos , Filogenia , Especificidade da Espécie , Stenotrophomonas maltophilia/efeitos dos fármacos , Stenotrophomonas maltophilia/metabolismo
16.
Metabolomics ; 15(1): 10, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30830447

RESUMO

INTRODUCTION: The measurement of specific volatile organic compounds in breath has been proposed as a potential diagnostic for a variety of diseases. The most well-studied bacterial lung infection in the breath field is that caused by Pseudomonas aeruginosa. OBJECTIVES: To determine a discriminatory core of molecules in the "breath-print" of mice during a lung infection with four strains of P. aeruginosa (PAO1, PA14, PAK, PA7). Furthermore, we attempted to extrapolate a strain-specific "breath-print" signature to investigate the possibility of recapitulating the genetic phylogenetic groups (Stewart et al. Pathog Dis 71(1), 20-25, 2014. https://doi.org/10.1111/2049-632X.12107 ). METHODS: Breath was collected into a Tedlar bag and shortly after drawn into a thermal desorption tube. The latter was then analyzed into a comprehensive multidimensional gas chromatography coupled with a time-of-flight mass spectrometer. Random forest algorithm was used for selecting the most discriminatory features and creating a prediction model. RESULTS: Three hundred and one molecules were significantly different between animals infected with P. aeruginosa, and those given a sham infection (PBS) or inoculated with UV-killed P. aeruginosa. Of those, nine metabolites could be used to discriminate between the three groups with an accuracy of 81%. Hierarchical clustering showed that the signature from breath was due to a specific response to live bacteria instead of a generic infection response. Furthermore, we identified ten additional volatile metabolites that could differentiate mice infected with different strains of P. aeruginosa. A phylogram generated from the ten metabolites showed that PAO1 and PA7 were the most distinct group, while PAK and PA14 were interspersed between the former two groups. CONCLUSIONS: To the best of our knowledge, this is the first study to report on a 'core' murine breath print, as well as, strain level differences between the compounds in breath. We provide identifications (by running commercially available analytical standards) to five breath compounds that are predictive of P. aeruginosa infection.


Assuntos
Testes Respiratórios/métodos , Metabolômica/métodos , Compostos Orgânicos Voláteis/análise , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas/métodos , Metaboloma/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-30533649

RESUMO

Stenotrophomonas maltophilia is an opportunistic pathogen causing airway infection in people with cystic fibrosis (CF). Here, we report the draft genome sequences of two S. maltophilia strains, AU30115 and AU32848, recovered from CF patients.

18.
J Immunol ; 201(8): 2377-2384, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30158125

RESUMO

Studies comparing endogenous and recombinant serum amyloid A (SAA) have generated conflicting data on the proinflammatory function of these proteins. In exploring this discrepancy, we found that in contrast to commercially sourced recombinant human SAA1 (hSAA1) proteins produced in Escherichia coli, hSAA1 produced from eukaryotic cells did not promote proinflammatory cytokine production from human or mouse cells, induce Th17 differentiation, or stimulate TLR2. Proteomic analysis of E. coli-derived hSAA1 revealed the presence of numerous bacterial proteins, with several being reported or probable lipoproteins. Treatment of hSAA1 with lipoprotein lipase or addition of a lipopeptide to eukaryotic cell-derived hSAA1 inhibited or induced the production of TNF-α from macrophages, respectively. Our results suggest that a function of SAA is in the binding of TLR2-stimulating bacterial proteins, including lipoproteins, and demand that future studies of SAA employ a recombinant protein derived from eukaryotic cells.


Assuntos
Leucócitos Mononucleares/imunologia , Proteína Amiloide A Sérica/imunologia , Células Th17/imunologia , Receptor 2 Toll-Like/agonistas , Adulto , Animais , Diferenciação Celular , Citocinas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/imunologia , Células HEK293 , Humanos , Mediadores da Inflamação/metabolismo , Lipoproteínas/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/genética , Proteína Amiloide A Sérica/genética
19.
Infect Immun ; 86(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29712730

RESUMO

The interactions between Klebsiella pneumoniae and the host environment at the site of infection are largely unknown. Pulmonary surfactant serves as an initial point of contact for inhaled bacteria entering the lung and is thought to contain molecular cues that aid colonization and pathogenesis. To gain insight into this ecological transition, we characterized the transcriptional response of K. pneumoniae MGH 78578 to purified pulmonary surfactant. This work revealed changes within the K. pneumoniae transcriptome that likely contribute to host colonization, adaptation, and virulence in vivo Notable transcripts expressed under these conditions include genes involved in capsule synthesis, lipopolysaccharide modification, antibiotic resistance, biofilm formation, and metabolism. In addition, we tested the contributions of other surfactant-induced transcripts to K. pneumoniae survival using engineered isogenic KPPR1 deletion strains in a murine model of acute pneumonia. In these infection studies, we identified the MdtJI polyamine efflux pump and the ProU glycine betaine ABC transporter to be significant mediators of K. pneumoniae survival within the lung and confirmed previous evidence for the importance of de novo leucine synthesis to bacterial survival during infection. Finally, we determined that pulmonary surfactant promoted type 3 fimbria-mediated biofilm formation in K. pneumoniae and identified two surfactant constituents, phosphatidylcholine and cholesterol, that drive this response. This study provides novel insight into the interactions occurring between K. pneumoniae and the host at an important infection site and demonstrates the utility of purified lung surfactant preparations for dissecting host-lung pathogen interactions in vitro.


Assuntos
Biofilmes/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Surfactantes Pulmonares/farmacologia , Aminoácidos de Cadeia Ramificada/biossíntese , Animais , Poliaminas Biogênicas/fisiologia , Fímbrias Bacterianas/fisiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Klebsiella pneumoniae/patogenicidade , Klebsiella pneumoniae/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Virulência/genética
20.
Microbiology (Reading) ; 164(4): 635-645, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29517479

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa can metabolize carnitine and O-acylcarnitines, which are abundant in host muscle and other tissues. Acylcarnitines are metabolized to carnitine and a fatty acid. The liberated carnitine and its catabolic product, glycine betaine, can be used as osmoprotectants, to induce the secreted phospholipase C PlcH, and as sole carbon, nitrogen and energy sources. P. aeruginosa is incapable of de novo synthesis of carnitine and acylcarnitines, therefore they must be imported from an exogenous source. In this study, we present the first characterization of bacterial acylcarnitine transport. Short-chain acylcarnitines are imported by the ABC transporter CaiX-CbcWV. Medium- and long-chain acylcarnitines (MCACs and LCACs) are hydrolysed extracytoplasmically and the free carnitine is transported primarily through CaiX-CbcWV. These findings suggest that the periplasmic protein CaiX has a binding pocket that permits short acyl chains on its carnitine ligand and that there are one or more secreted hydrolases that cleave MCACs and LCACs. To identify the secreted hydrolase(s), we used a saturating genetic screen and transcriptomics followed by phenotypic analyses, but neither led to identification of a contributing hydrolase, supporting but not conclusively demonstrating redundancy for this activity.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Carnitina/análogos & derivados , Proteínas de Transporte/metabolismo , Hidrolases/metabolismo , Pseudomonas aeruginosa/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transporte Biológico Ativo , Carnitina/metabolismo , Proteínas de Transporte/genética , Espaço Extracelular/metabolismo , Hidrólise , Modelos Biológicos , Mutação , Pseudomonas aeruginosa/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA