Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Top Microbiol Immunol ; 438: 189-221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34524508

RESUMO

Reactivation of latent varicella-zoster virus (VZV) causes herpes zoster (HZ), which is commonly accompanied by acute pain and pruritus over the time course of a zosteriform rash. Although the rash and associated pain are self-limiting, a considerable fraction of HZ cases will subsequently develop debilitating chronic pain states termed postherpetic neuralgia (PHN). How VZV causes acute pain and the mechanisms underlying the transition to PHN are far from clear. The human-specific nature of VZV has made in vivo modeling of pain following reactivation difficult to study because no single animal can reproduce reactivated VZV disease as observed in the clinic. Investigations of VZV pathogenesis following primary infection have benefited greatly from human tissues harbored in immune-deficient mice, but modeling of acute and chronic pain requires an intact nervous system with the capability of transmitting ascending and descending sensory signals. Several groups have found that subcutaneous VZV inoculation of the rat induces prolonged and measurable changes in nociceptive behavior, indicating sensitivity that partially mimics the development of mechanical allodynia and thermal hyperalgesia seen in HZ and PHN patients. Although it is not a model of reactivation, the rat is beginning to inform how VZV infection can evoke a pain response and induce long-lasting alterations to nociception. In this review, we will summarize the rat pain models from a practical perspective and discuss avenues that have opened for testing of novel treatments for both zoster-associated pain and chronic PHN conditions, which remain in critical need of effective therapies.


Assuntos
Dor Aguda , Dor Crônica , Exantema , Herpes Zoster , Neuralgia Pós-Herpética , Humanos , Ratos , Camundongos , Animais , Neuralgia Pós-Herpética/complicações , Dor Crônica/complicações , Dor Aguda/complicações , Herpes Zoster/complicações , Herpes Zoster/tratamento farmacológico , Herpesvirus Humano 3/fisiologia , Exantema/complicações , Doença Crônica
2.
Clin Cancer Res ; 28(23): 5221-5230, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36165913

RESUMO

PURPOSE: The favorable prognosis of stage I and II nasopharyngeal carcinoma (NPC) has motivated a search for biomarkers for the early detection and risk assessment of Epstein-Barr virus (EBV)-associated NPC. Although EBV seropositivity is ubiquitous among adults, a spike in antibodies against select EBV proteins is a harbinger of NPC. A serologic survey would likely reveal which EBV antibodies could discriminate those at risk of developing NPC. EXPERIMENTAL DESIGN: Lysates from a new EBV mammalian expression library were used in a denaturing multiplex immunoblot assay to survey antibodies against EBV in sera collected from healthy individuals who later developed NPC (incident cases) in a prospective cohort from Singapore and validated in an independent cohort from Shanghai, P.R. China. RESULTS: We show that IgA against EBV nuclear antigen 1 (EBNA1) discriminated incident NPC cases from matched controls with 100% sensitivity and 100% specificity up to 4 years before diagnosis in both Singapore and Shanghai cohorts. Incident NPC cases had a greater IgG repertoire against lytic-classified EBV proteins, and the assortment of IgA against EBV proteins detected by the immunoblot assay increased closer to diagnosis. CONCLUSIONS: Although NPC tumors consistently harbor latent EBV, the observed heightened systemic and mucosal immunity against lytic-classified antigens years prior to clinical diagnosis is consistent with enhanced lytic transcription. We conclude that an expanding EBV mucosal reservoir (which can be latent and/or lytic) is a risk factor for NPC. This presents an opportunity to identify those at risk of developing NPC using IgA against EBNA1 as a biomarker.


Assuntos
Carcinoma , Infecções por Vírus Epstein-Barr , Neoplasias Nasofaríngeas , Adulto , Humanos , Antígenos Nucleares do Vírus Epstein-Barr , Herpesvirus Humano 4/genética , Carcinoma Nasofaríngeo/diagnóstico , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/diagnóstico , Estudos Prospectivos , Imunoglobulina A , China , Anticorpos Antivirais , Biomarcadores
3.
EMBO J ; 41(14): e109217, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35670106

RESUMO

Varicella-Zoster virus (VZV) causes chickenpox and shingles. Although the infection is associated with severe morbidity in some individuals, molecular mechanisms that determine innate immune responses remain poorly defined. We found that the cGAS/STING DNA sensing pathway was required for type I interferon (IFN) induction during VZV infection and that recognition of VZV by cGAS restricted its replication. Screening of a VZV ORF expression library identified the essential VZV tegument protein ORF9 as a cGAS antagonist. Ectopically or virally expressed ORF9 bound to endogenous cGAS leading to reduced type I IFN responses to transfected DNA. Confocal microscopy revealed co-localisation of cGAS and ORF9. ORF9 and cGAS also interacted directly in a cell-free system and phase-separated together with DNA. Furthermore, ORF9 inhibited cGAMP production by cGAS. Taken together, these results reveal the importance of the cGAS/STING DNA sensing pathway for VZV recognition and identify a VZV immune antagonist that partially but directly interferes with DNA sensing via cGAS.


Assuntos
Herpesvirus Humano 3 , Interferon Tipo I , Nucleotidiltransferases , Proteínas Virais , DNA/metabolismo , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/imunologia , Humanos , Imunidade Inata , Interferon Tipo I/imunologia , Proteínas de Membrana/imunologia , Nucleotidiltransferases/antagonistas & inibidores , Nucleotidiltransferases/imunologia , Proteínas Virais/imunologia
4.
PLoS Pathog ; 17(7): e1009689, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34228767

RESUMO

Herpes zoster, the result of varicella-zoster virus (VZV) reactivation, is frequently complicated by difficult-to-treat chronic pain states termed postherpetic neuralgia (PHN). While there are no animal models of VZV-induced pain following viral reactivation, subcutaneous VZV inoculation of the rat causes long-term nocifensive behaviors indicative of mechanical and thermal hypersensitivity. Previous studies using UV-inactivated VZV in the rat model suggest viral gene expression is required for the development of pain behaviors. However, it remains unclear if complete infection processes are needed for VZV to induce hypersensitivity in this host. To further assess how gene expression and replication contribute, we developed and characterized three replication-conditional VZV using a protein degron system to achieve drug-dependent stability of essential viral proteins. Each virus was then assessed for induction of hypersensitivity in rats under replication permissive and nonpermissive conditions. VZV with a degron fused to ORF9p, a late structural protein that is required for virion assembly, induced nocifensive behaviors under both replication permissive and nonpermissive conditions, indicating that complete VZV replication is dispensable for the induction of hypersensitivity. This conclusion was confirmed by showing that a genetic deletion recombinant VZV lacking DNA packaging protein ORF54p still induced prolonged hypersensitivities in the rat. In contrast, VZV with a degron fused to the essential IE4 or IE63 proteins, which are involved in early gene regulation of expression, induced nocifensive behaviors only under replication permissive conditions, indicating importance of early gene expression events for induction of hypersensitivity. These data establish that while early viral gene expression is required for the development of nocifensive behaviors in the rat, complete replication is dispensable. We postulate this model reflects events leading to clinical PHN, in which a population of ganglionic neurons become abortively infected with VZV during reactivation and survive, but host signaling becomes altered in order to transmit ongoing pain.


Assuntos
Modelos Animais de Doenças , Neuralgia Pós-Herpética/virologia , Infecção pelo Vírus da Varicela-Zoster/virologia , Replicação Viral/fisiologia , Animais , Herpesvirus Humano 3 , Masculino , Neurônios/virologia , Ratos , Ratos Sprague-Dawley
5.
PeerJ ; 6: e5679, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30280045

RESUMO

DNA copies of many non-retroviral RNA virus genes or portions thereof (NIRVs) are present in the nuclear genomes of many eukaryotes. These have often been preserved for millions of years of evolution, suggesting that they play an important cellular function. One possible function is resistance to infection by related viruses. In some cases, this appears to occur through the piRNA system, but in others by way of counterfeit viral proteins encoded by NIRVs. In the fungi, NIRVs may be as long as 1,400 uninterrupted codons. In one such case in the yeast Debaryomyces hansenii, one of these genes provides immunity to a related virus by virtue of expression of a counterfeit viral capsid protein, which interferes with assembly of viral capsids by negative complementation. The widespread occurrence of non-retroviral RNA virus genes in eukaryotes may reflect an underappreciated method of host resistance to infection. This work demonstrates for the first time that an endogenous host protein encoded by a gene that has been naturally acquired from a virus and fixed in a eukaryote can interfere with the replication of a related virus and do so by negative complementation.

6.
PeerJ ; 3: e876, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25870770

RESUMO

The exploration of the evolution of RNA viruses has been aided recently by the discovery of copies of fragments or complete genomes of non-retroviral RNA viruses (Non-retroviral Endogenous RNA Viral Elements, or NERVEs) in many eukaryotic nuclear genomes. Among the most prominent NERVEs are partial copies of the RNA dependent RNA polymerase (RdRP) of the mitoviruses in plant mitochondrial genomes. Mitoviruses are in the family Narnaviridae, which are the simplest viruses, encoding only a single protein (the RdRP) in their unencapsidated viral plus strand. Narnaviruses are known only in fungi, and the origin of plant mitochondrial mitovirus NERVEs appears to be horizontal transfer from plant pathogenic fungi. At least one mitochondrial mitovirus NERVE, but not its nuclear copy, is expressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA