Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(2): 364-371.e3, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36521493

RESUMO

Identifying the mechanisms for seed dispersal and persistence of species is a central aim of ecology. Seed dispersal by animals is an essential form of dissemination in many plant communities, including seeds of over 66% of neotropical canopy tree species.1,2 Besides physical dispersal, animals influence seed germination probabilities through scarification, breaking dormancy, and preventing rotting, so plants often invest important resources in attracting them. Orchids are predominantly adapted to wind dispersal, having dust-like seeds that are easily uplifted. Exceptions include bird-,3,4 cricket-,5,6 and mammal-dispersed7 species, featuring fleshy fruits with hard seeds that germinate after passing the animal's digestive system. Given the similarity in fruit and seed morphology, zoochory has also been suggested in Vanilla,8,9,10,11,12,13,14,15 a pantropical genus of 118 species with vine-like growth.16,17,18 We test this prediction through in situ and ex situ experimentation using fruits of Vanilla planifolia, and wild relatives, from which vanillin-a widely used natural aroma and flavoring-is obtained. Seeds from dehiscent fruits are removed by male Euglossini collecting fragrances, a unique case in plants, and female Meliponini bees gathering nest-building materials, a first among monocots. By contrast, mammals, mostly rodents, consume the nutritious indehiscent fruits, passing the seeds up to 18 h after consumption. Protocorm formation in digested and undigested seeds proves that scarification in the gut is not strictly required for germination. Multimodal seed dispersal mechanisms are proven for the first time in Orchidaceae, with ectozoochory and endozoochory playing crucial roles in the unusually broad distribution of Vanilla.


Assuntos
Dispersão de Sementes , Animais , Sementes , Frutas/anatomia & histologia , Plantas , Germinação , Comportamento Alimentar , Mamíferos
2.
J Sci Food Agric ; 102(14): 6340-6348, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35527679

RESUMO

BACKGROUND: Local leafy vegetables are gaining attention as affordable sources of micronutrients, including vitamins, pro-vitamin carotenoids and other bioactive compounds. Stinging nettles (Urtica spp.) are used as source of fibers, herbal medicine and food. However, despite the relatively wide geographical spread of Urtica leptophylla on the American continent, little is known about its content of vitamin E congeners and carotenoids. We therefore investigated the particular nutritional potential of different plant structures of wild Costa Rican U. leptophylla by focusing on their vitamin E and carotenoid profiles. RESULTS: Young, mature and herbivore-damaged leaves, flowers, stems and petioles were collected and freeze-dried. Vitamin E and carotenoids were determined by high-performance liquid chromatography after liquid/liquid extraction with hexane. α-Tocopherol was the major vitamin E congener in all structures. Flowers had a high content of γ-tocopherol. Herbivore-damaged leaves had higher contents of vitamin E than undamaged leaves. Lutein was the major and ß-carotene the second most abundant carotenoid in U. leptophylla. No differences in carotenoid profiles were observed between damaged and undamaged leaves. CONCLUSION: The leaves of U. leptophylla had the highest nutritional value of all analyzed structures; therefore, they might represent a potential source of α-tocopherol, lutein and ß-carotene. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Urtica dioica , Vitamina E , Carotenoides/análise , Costa Rica , Flores/química , Hexanos , Luteína/análise , Vitamina E/análise , Vitaminas/análise , alfa-Tocoferol/análise , beta Caroteno/análise , gama-Tocoferol/análise
3.
Proc Biol Sci ; 280(1765): 20130960, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23804617

RESUMO

The great majority of plant species in the tropics require animals to achieve pollination, but the exact role of floral signals in attraction of animal pollinators is often debated. Many plants provide a floral reward to attract a guild of pollinators, and it has been proposed that floral signals of non-rewarding species may converge on those of rewarding species to exploit the relationship of the latter with their pollinators. In the orchid family (Orchidaceae), pollination is almost universally animal-mediated, but a third of species provide no floral reward, which suggests that deceptive pollination mechanisms are prevalent. Here, we examine floral colour and shape convergence in Neotropical plant communities, focusing on certain food-deceptive Oncidiinae orchids (e.g. Trichocentrum ascendens and Oncidium nebulosum) and rewarding species of Malpighiaceae. We show that the species from these two distantly related families are often more similar in floral colour and shape than expected by chance and propose that a system of multifarious floral mimicry--a form of Batesian mimicry that involves multiple models and is more complex than a simple one model-one mimic system--operates in these orchids. The same mimetic pollination system has evolved at least 14 times within the species-rich Oncidiinae throughout the Neotropics. These results help explain the extraordinary diversification of Neotropical orchids and highlight the complexity of plant-animal interactions.


Assuntos
Evolução Biológica , Flores/fisiologia , Orchidaceae/fisiologia , Polinização , Animais , Abelhas/fisiologia , Cor , Pólen/fisiologia , Especificidade da Espécie
4.
Proc Natl Acad Sci U S A ; 105(8): 2923-8, 2008 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-18258745

RESUMO

DNA barcoding is a technique in which species identification is performed by using DNA sequences from a small fragment of the genome, with the aim of contributing to a wide range of ecological and conservation studies in which traditional taxonomic identification is not practical. DNA barcoding is well established in animals, but there is not yet any universally accepted barcode for plants. Here, we undertook intensive field collections in two biodiversity hotspots (Mesoamerica and southern Africa). Using >1,600 samples, we compared eight potential barcodes. Going beyond previous plant studies, we assessed to what extent a "DNA barcoding gap" is present between intra- and interspecific variations, using multiple accessions per species. Given its adequate rate of variation, easy amplification, and alignment, we identified a portion of the plastid matK gene as a universal DNA barcode for flowering plants. Critically, we further demonstrate the applicability of DNA barcoding for biodiversity inventories. In addition, analyzing >1,000 species of Mesoamerican orchids, DNA barcoding with matK alone reveals cryptic species and proves useful in identifying species listed in Convention on International Trade of Endangered Species (CITES) appendixes.


Assuntos
Biodiversidade , Genes de Plantas/genética , Filogenia , Plantas/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Costa Rica , Variação Genética , Modelos Genéticos , Dados de Sequência Molecular , África do Sul , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA