Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
N Biotechnol ; 66: 53-60, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34555549

RESUMO

The COVID-19 pandemic has illustrated the global demand for rapid, low-cost, widely distributable and point-of-care nucleic acid diagnostic technologies. Such technologies could help disrupt transmission, sustain economies and preserve health and lives during widespread infection. In contrast, conventional nucleic acid diagnostic procedures require trained personnel, complex laboratories, expensive equipment, and protracted processing times. In this work, lyophilized cell-free protein synthesis (CFPS) and toehold switch riboregulators are employed to develop a promising paper-based nucleic acid diagnostic platform activated simply by the addition of saliva. First, to facilitate distribution and deployment, an economical paper support matrix is identified and a mass-producible test cassette designed with integral saliva sample receptacles. Next, CFPS is optimized in the presence of saliva using murine RNase inhibitor. Finally, original toehold switch riboregulators are engineered to express the bioluminescent reporter NanoLuc in response to SARS-CoV-2 RNA sequences present in saliva samples. The biosensor generates a visible signal in as few as seven minutes following administration of 15 µL saliva enriched with high concentrations of SARS-CoV-2 RNA sequences. The estimated cost of this test is less than 0.50 USD, which could make this platform readily accessible to both the developed and developing world. While additional research is needed to decrease the limit of detection, this work represents important progress toward developing a diagnostic technology that is rapid, low-cost, distributable and deployable at the point-of-care by a layperson.


Assuntos
Técnicas Biossensoriais , COVID-19 , Medições Luminescentes , RNA Viral/isolamento & purificação , Saliva/química , COVID-19/diagnóstico , Humanos , Luciferases , SARS-CoV-2
2.
Micromachines (Basel) ; 14(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36677067

RESUMO

Microfluidic devices (MFDs) printed in 3-D geometry using digital light projection to polymerize monomers often have surfaces that are not as hydrophobic as MFDs made from polydimethylsiloxane. Droplet microfluidics in these types of devices are subject to droplet adhesion and aqueous spreading on less hydrophobic MFD surfaces. We have developed a post-processing technique using hydrophobic monomers that renders the surfaces of these devices much more hydrophobic. The technique is fast and easy, and involves flowing monomer without initiator into the channels and then exposing the entire device to UV light that generates radicals from the initiator molecules remaining in the original 3-D polymerization. After treatment the channels can be cleared and the surface is more hydrophobic, as evidenced by higher contact angles with aqueous droplets. We hypothesize that radicals generated near the previously printed surfaces initiate polymerization of the hydrophobic monomers on the surfaces without bulk polymerization extending into the channels. The most hydrophobic surfaces were produced by treatment with an alkyl acrylate and a fluorinated acrylate. This technique could be used for surface treatment with other types of monomers to impart unique characteristics to channels in MFDs.

3.
Micromachines (Basel) ; 12(1)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467026

RESUMO

Droplet generation has been widely used in conventional two-dimensional (2D) microfluidic devices, and has recently begun to be explored for 3D-printed droplet generators. A major challenge for 3D-printed devices is preventing water-in-oil droplets from sticking to the interior surfaces of the droplet generator when the device is not made from hydrophobic materials. In this study, two approaches were investigated and shown to successfully form droplets in 3D-printed microfluidic devices. First, several printing resin candidates were tested to evaluate their suitability for droplet formation and material properties. We determined that a hexanediol diacrylate/lauryl acrylate (HDDA/LA) resin forms a solid polymer that is sufficiently hydrophobic to prevent aqueous droplets (in a continuous oil flow) from attaching to the device walls. The second approach uses a fully 3D annular channel-in-channel geometry to form microfluidic droplets that do not contact channel walls, and thus, this geometry can be used with hydrophilic resins. Stable droplets were shown to form using the channel-in-channel geometry, and the droplet size and generation frequency for this geometry were explored for various flow rates for the continuous and dispersed phases.

4.
ACS Appl Bio Mater ; 3(4): 2239-2244, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32467881

RESUMO

We report a non-cytotoxic resin compatible with and designed for use in custom high-resolution 3D printers that follow the design approach described in Gong et al., Lab Chip 17, 2899 (2017). The non-cytotoxic resin is based on a poly(ethylene glycol) diacrylate (PEGDA) monomer with avobenzone as the UV absorber instead of 2-nitrophenyl phenyl sulfide (NPS). Both NPS-PEGDA and avobenzone-PEGDA (A-PEGDA) resins were evaluated for cytotoxicity and cell adhesion. We show that NPS-PEGDA can be made effectively non-cytotoxic with a post-print 12-hour ethanol wash, and that A-PEGDA, as-printed, is effectively non-cytotoxic. 3D prints made with either resin do not support strong cell adhesion in their as-printed state; however, cell adhesion increases dramatically with a short plasma treatment. Using A-PEGDA, we demonstrate spheroid formation in ultra-low adhesion 3D printed wells, and cell migration from spheroids on plasma-treated adherent surfaces. Given that A-PEGDA can be 3D printed with high resolution, it has significant promise for a wide variety of cell-based applications using 3D printed microfluidic structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA