Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1305: 342507, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38677834

RESUMO

Microfluidic and capillary devices are increasingly being used in analytical applications while their overall size keeps decreasing. Detection sensitivity for these microdevices gains more importance as device sizes and consequently, sample volumes, decrease. This paper reviews optical, electrochemical, electrical, and mass spectrometric detection methods that are applicable to capillary scale and microfluidic devices, with brief introduction to the principles in each case. Much of this is considered in the context of separations. We do consider theoretical aspects of separations by open tubular liquid chromatography, arguably the most potentially fertile area of separations that has been left fallow largely because of lack of scale-appropriate detection methods. We also examine the theoretical basis of zone electrophoretic separations. Optical detection methods discussed include UV/Vis absorbance, fluorescence, chemiluminescence and refractometry. Amperometry is essentially the only electrochemical detection method used in microsystems. Suppressed conductance and especially contactless conductivity (admittance) detection are in wide use for the detection of ionic analytes. Microfluidic devices, integrated to various mass spectrometers, including ESI-MS, APCI-MS, and MALDI-MS are discussed. We consider the advantages and disadvantages of each detection method and compare the best reported limits of detection in as uniform a format as the available information allows. While this review pays more attention to recent developments, our primary focus has been on the novelty and ingenuity of the approach, regardless of when it was first proposed, as long as it can be potentially relevant to miniature platforms.

2.
Talanta ; 254: 124173, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36512972

RESUMO

We examine and then optimize alignment of chromatograms collected on nominally identical columns using retention time locking (RTL), an instrumental alignment tool, and software-based alignment using correlation optimized warping (COW). For this purpose, three samples are constructed by spiking two sets of analytes into a base test mixture. The three samples are analyzed by high-speed gas chromatography with four nominally identical columns and identical separation conditions. The data is first analyzed without alignment, then using COW alone, then RTL alone, and finally with RTL followed by COW to correct the severe column-to-column misalignment. Principal component analysis (PCA) is used to investigate how well each alignment method clustered the chromatograms into the three sample classes via a scores plot without being compromised by the specific column(s) used. The degree-of-class separation (DCS) is used as a classification metric, measured as the Euclidian distance between the centroids of two clusters in PC space in the scores plot, normalized by their pooled variance. With no alignment, the average DCS between sample classes (DCSsam) was 3.0, while the average DCS between the four nominally identical columns, i.e., column classes (DCScol) was 76.1 (ideally the DCScol should be 0), indicating the chromatograms were initially classified by the columns used. Using either COW or RTL alone also produced unsatisfactory results, with COW alone incorrectly aligning many peaks, leading to a DCSsam of only 1.9 and DCScol of 1.7, while RTL alone provided a DCSsam of 4.7 and DCScol of 4.2. Finally, using RTL followed by COW alignment, DCSsam increased to 32.5, indicating successful classification by chemical differences between sample classes, while the DCScol decreased to 0.4, indicating virtually no classification due to column-to-column differences, as desired. Thus, RTL provided a "first-order" correction of the initial retention mismatch observed for the nominally identical columns, while additional alignment via COW was required to optimize sample classification by PCA.


Assuntos
Algoritmos , Cromatografia Gasosa/métodos , Análise de Componente Principal
3.
Anal Chem ; 93(24): 8526-8535, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34097388

RESUMO

We investigate the extent to which comprehensive three-dimensional gas chromatography (GC3) provides a signal enhancement (SE) and a signal-to-noise ratio enhancement (S/NRel) relative to one-dimensional (1D)-GC. Specifically, the SE is defined as the ratio of the tallest 3D peak height from the GC3 separation to the 1D peak height from the unmodulated 1D-GC separation. A model is proposed which allows the analyst to predict the theoretically attainable SE (SET) based upon the peak width and sampling density inputs. The model is validated via comparison of the SET to the experimentally measured SE (SEM) obtained using total-transfer GC3 (100% duty cycle for both modulators) with time-of-flight mass spectrometry detection. Two experimental conditions were studied using the same GC3 column set, differing principally in the modulation period from the 1D to 2D columns: 4 s versus 8 s. Under the first set of conditions, the average SEM was 97 (±22), in excellent agreement with the SET of 97 (±18). The second set of conditions improved the average SEM to 181 (±27), also in agreement with the average SET of 176 (±26). The average S/NRel following correction for the mass spectrum acquisition frequency was 38.8 (±11.2) and 59.0 (±27.2) for the two sets of conditions. The enhancement in S/N is largely attributed to moving the signal to a higher frequency domain where the impact of "low frequency" noise is less detrimental. The findings here provide strong evidence that GC3 separations can provide enhanced detectability relative to 1D-GC and comprehensive two-dimensional gas chromatography (GC×GC) separations.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas , Razão Sinal-Ruído
4.
J Chromatogr A ; 1634: 461654, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33166893

RESUMO

Although comprehensive two-dimensional (2D) gas chromatography (GC × GC) is a powerful technique for complex samples, component overlap remains likely. An intriguing route to address this challenge is to utilize the additional peak capacity and chemical selectivity provided by comprehensive three-dimensional (3D) gas chromatography (GC3), especially with time-of-flight mass spectrometry detection (GC3-TOFMS). However, the GC3-TOFMS instrumentation reported to date has employed one or both modulators with a duty cycle < 100%, making the potential gain in detection sensitivity over GC × GC modest, or perhaps even worse. Herein, we describe instrumentation for GC3-TOFMS in which both modulators provide total-transfer (100% duty cycle). Specifically, the instrument is based on the facile modification of a commercial thermally modulated comprehensive GC × GC-TOFMS platform for modulation from the 1D column to the 2D column, with recently described dynamic pressure gradient modulation (DPGM) as the second modulator from the 2D column to the 3D column, which is a total-transfer flow modulation technique. Area measurements of 1D peaks are compared to the sum of 3D peak areas to validate the assumption that total-transfer from 1D to 3D is accomplished. Additionally, peak heights were amplified by as high as a factor of 177 (x̅ = 130, s = 47) via comparison of 1D peak heights to the maximum 3D peak heights. Column selection is explored, with emphasis on the resulting peak width-at-base on each dimension and usage of 3D space as evaluation metrics. Using a nonpolar × polar × ionic liquid column combination, an effective peak capacity which considers modulation-induced broadening as high as 32,300 for select analytes was achieved (x̅ = 19,900, s = 10,700). The analytical benefits of employing three selective phases, mass spectrometry detection, and total-transfer modulation are explored with separations of a metabolomics-type sample, i.e., derivatized porcine serum, and a jet fuel spiked with various sulfur-containing compounds.


Assuntos
Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Animais , Temperatura Alta , Hidrocarbonetos/química , Hidrocarbonetos/isolamento & purificação , Líquidos Iônicos/química , Reprodutibilidade dos Testes , Soro/química , Suínos
5.
Anal Chim Acta ; 1134: 115-124, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33059857

RESUMO

Dynamic pressure gradient modulation (DPGM) in full modulation mode is optimized for comprehensive two-dimensional (2D) gas chromatography (GC × GC) with time-of-fight mass spectrometry (TOFMS) detection to obtain high peak capacity separations and demonstrate broad applicability for complex samples. A pulse valve introduces an auxiliary carrier gas flow at a T-union connecting the first dimension (1D) column to the second dimension (2D) column. At a sufficiently high auxiliary pressure (Paux) the 1D flow is temporarily stopped. Then, during each modulation period (PM) the valve is turned off briefly, a period termed the pulse width (pw), allowing the 1D effluent to essentially be reinjected onto the 2D column for the modulated separations. Modifications to the modulator assembly are provided to improve performance. Method optimization is demonstrated for a 116-component test mixture by tuning the Paux and the pw. For a PM = 2 s and 1F of 0.10 ml/min, the optimal pw and initial Paux selected were 200 ms and 330.9 kPa (33 psig), respectively. The 30 min separation of the test mixture provided a 1D peak capacity of 1nc = 330 and a 2D peak capacity of 2nc = 15, hence an ideal 2D peak capacity nc,2D = 1nc × 2nc = 4950. Likewise, the 2D peak capacity corrected for undersampling of the 1D separation was 4500 and corrected for both undersampling and sampling variation via statistical overlap theory was 4090. These results provide a 2-fold improvement in peak capacity relative to the previous DPGM study in full modulation mode for GC × GC-TOFMS. The optimized conditions were applied for a variety of applications: diesel fuel, derivatized cow serum, solid phase microextraction (SPME) of coffee headspace, and SPME of river water headspace. Additionally, the fraction of 2D separation space utilized (fcoverage), as defined by the minimum convex hull method, ranged from 0.60 to 0.85. We observed that any fcoverage correction to 2D peak capacity is highly sample dependent, since all samples, except for the diesel sample, were run with the same separation conditions, and yet the fcoverage ranged from 0.60 to 0.80.

6.
J Chromatogr A ; 1623: 461190, 2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32505284

RESUMO

Basic principles are introduced for implementing discovery-based analysis with automated quantification of data obtained using comprehensive three-dimensional gas chromatography with flame ionization detection (GC3-FID). The GC3-FID instrument employs dynamic pressure gradient modulation, providing full modulation (100% duty cycle) with a fast modulation period (PM) of 100 ms. Specifically, tile-based Fisher-ratio analysis, previously developed for comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS), is adapted and applied for GC3-FID where the third chromatographic dimension (3D) is treated as the "spectral" dimension. To evaluate the instrumental platform and software implementation, ten "non-native" compounds were spiked into a ninety-component base mixture to create two classes with a concentration ratio of two for the spiked analyte compounds. The Fisher ratio software identified 95 locations of potential interest (i.e., hits), with all ten spiked analytes discovered within the top fourteen hits. All 95 hits were quantified by a novel signal ratio (S-ratio) algorithm portion of the F-ratio software, which determines the time-dependent S-ratio of the 3D chromatograms from one class to another, thus providing relative quantification. The average S-ratio for spiked analytes was 1.94 ± 0.14 mean absolute error (close to the nominal concentration ratio of two), and 1.06 ± 0.16 mean absolute error for unspiked (i.e., matrix) components. The appearance of the S-ratio as a function of 3D retention time in the GC3 dataset, referred to as an S-ratiogram, provides indication of peak purity for each hit. The unique shape of the S-ratiogram for hit 1, α-pinene, suggested likely 3D overlap. Parallel factor analysis (PARAFAC) decomposition of the hit location confirmed that overlap was occurring and successfully decomposed α-pinene from a highly overlapped (3Rs = 0.1) matrix interferent.


Assuntos
Cromatografia Gasosa/métodos , Ionização de Chama , Algoritmos , Monoterpenos Bicíclicos/análise , Análise Fatorial , Espectrometria de Massas/métodos , Software
7.
J Chromatogr A ; 1609: 460488, 2020 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-31519408

RESUMO

We report the discovery, preliminary investigation, and demonstration of a novel form of differential flow modulation for comprehensive two-dimensional (2D) gas chromatography (GC×GC). Commercially available components are used to apply a flow of carrier gas with a suitable applied auxiliary gas pressure (Paux) to a T-junction joining the first (1D) and second (2D) dimension columns. The 1D eluate is confined at the T-junction, and introduced for 2D separation with a cyclic rhythm, dependent upon the relationship of the modulation period (PM) to the pulse width (pw), where pw is defined as the time interval when the auxiliary gas flow at the T-junction is off. We refer to this flow modulation technique as "dynamic pressure gradient modulation" (DPGM) since a pressure gradient oscillates with the PM along the 1D and 2D column ensemble providing temporary stop-flow conditions and fast 2D flow rates, resulting in 100% duty cycle and full modulation. A 90-component test mixture was used to evaluate the technique with a pw of 60 ms and a PM of 750 ms. The resulting peaks were narrow, with 2Wb ranging from about 20-180 ms. With an average 1Wb of 3 s and a 2nc of 10, a 2D peak capacity, nc,2D, for the 25 min separation was 5000. The detector response enhancement factor (DREF) is reported, defined as the peak height of the highest modulated 2D peak divided by the unmodulated 1D peak height (DREF = 2h/1h). The DREF ranged from about 7-87, depending on the 1Wb and 2Wb for a given analyte. A diesel sample was analyzed to demonstrate performance with a complex sample. Based upon the average 1Wb of 5 s and an average 2Wb of 168 ms, a nc,2D of 8640 was obtained for the 60 min diesel separation. Finally, the modulation principle was investigated as a function of PM, pw, and the volumetric flow rates, 1F and 2F. The measured 2Wb correlate well with the theoretical 2D injected width, given by 2Winj = (1F/2F) ·PM. However, the relevant 1F appears to be dictated by the 1D flow rate when no pressure is applied (during the pw interval), instead of 1F being the average flow rate on 1D (defined by the 1D dead time). The findings provide strong evidence for a differential flow modulation mechanism.


Assuntos
Cromatografia Gasosa/instrumentação , Cromatografia Gasosa/métodos , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA