Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biotechniques ; Suppl: 7-11, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16528910

RESUMO

New technologies are needed that can diagnose cancer more rapidly and accurately. These technologies must also have the ability to identify the particular cellular abnormalities contributing to the malignancy, thus directing the appropriate treatments. Such technologies should permit absolute quantitation of specific tumor biomarkers and their level of posttranslational modifications. Quantitative molecular profiling of cancer signaling networks would provide a more detailed understanding of the contribution of protein expression and posttranslational modification levels to tumorigenesis. We have developed a unique approach for absolute quantitation of protein expression that integrates affinity capture of proteolytic peptides with mass spectrometry and thus provides detection, identification, and quantitation of their cognate proteins. We have previously shown the high sensitivity and specificity of this approach. Here we demonstrate the absolute quantitation of a model peptide using our technology. We have used this approach to capture epitope-containing peptides from proteolytically digested target proteins, including p53, epidermal growth factor receptor (EGFR), and prostate-specific antigen (PSA). Our technology can easily be extended to the absolute quantitation of protein modification levels, in addition to the determination of protein expression levels, and can be readily adapted for use in a microarray format. This method offers an improved approach to protein chip technology that should prove useful for clinical diagnosis and drug development applications.


Assuntos
Biomarcadores Tumorais/análise , Espectrometria de Massas/métodos , Proteínas de Neoplasias/análise , Análise Serial de Proteínas/métodos , Anticorpos Monoclonais/metabolismo , Biomarcadores Tumorais/sangue , Biotecnologia/métodos , Epitopos , Receptores ErbB/análise , Testes de Precipitina , Antígeno Prostático Específico/sangue , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Proteína Supressora de Tumor p53/análise
2.
Mol Cell ; 16(6): 919-28, 2004 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-15610735

RESUMO

The X-ray crystal structure of the human constitutive androstane receptor (CAR, NR1I3)/retinoid X receptor alpha (RXRalpha, NR2B1) heterodimer sheds light on the mechanism of ligand-independent activation of transcription by nuclear receptors. CAR contains a single-turn Helix X that restricts the conformational freedom of the C-terminal AF2 helix, favoring the active state of the receptor. Helix X and AF2 sit atop four amino acids that shield the CAR ligand binding pocket. A fatty acid ligand was identified in the RXRalpha binding pocket. The endogenous RXRalpha ligand, combined with stabilizing interactions from the heterodimer interface, served to hold RXRalpha in an active conformation. The structure suggests that upon translocation, CAR/RXRalpha heterodimers are preorganized in an active conformation in cells such that they can regulate transcription of target genes. Insights into the molecular basis of CAR constitutive activity can be exploited in the design of inverse agonists as drugs for treatment of obesity.


Assuntos
Receptores Citoplasmáticos e Nucleares/química , Receptor X Retinoide alfa/química , Fatores de Transcrição/química , Sítios de Ligação , Receptor Constitutivo de Androstano , Dimerização , Humanos , Ligantes , Oximas/metabolismo , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptor X Retinoide alfa/metabolismo , Tiazóis/metabolismo , Fatores de Transcrição/metabolismo
3.
Cell Cycle ; 3(10): 1278-84, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15467459

RESUMO

Cdh1 contributes to proper exit from mitosis and maintenance of G(1) phase in eukaryotic cells by activating a large ubiquitin ligase called the anaphase-promoting complex, or cyclosome (APC/C). At the end of G(1), APC/C(Cdh1) is inhibited by cyclin-dependent kinase (CDK) phosphorylation of Cdh1. The specific Cdh1 phosphorylation sites used to regulate APC/C(Cdh1) activity have not been directly identified. Here, we used a mass spectrometric approach to identify the in vivo phosphorylation sites on yeast Cdh1. Surprisingly, in addition to several expected CDK phosphorylation sites, we discovered numerous nonCDK phosphorylation sites. In total, at least 19 serine and threonine residues on Cdh1 are phosphorylated in vivo. Seventeen of these sites are located in the N-terminal half of Cdh1, outside the highly conserved WD40 repeats. The pattern of phosphorylation was the same when Cdh1 was purified from yeast cultures arrested in S, early M and late M. Mutation of CDK consensus sequences eliminated detectable phosphorylation at many of the nonCDK sites. In contrast, mutation of nonCDK sites had no significant effect on CDK phosphorylation. We conclude that phosphorylation of CDK sites promotes the subsequent recognition of Cdh1 by at least one additional kinase. The function of nonCDK phosphorylation may differ from CDK phosphorylation because mutation of nonCDK sites did not result in constitutive activation of APC and consequent cell cycle arrest. These results suggest that phosphoregulation of APC/C(Cdh1) activity is much more complex than previously thought.


Assuntos
Saccharomyces cerevisiae/metabolismo , Complexos Ubiquitina-Proteína Ligase/química , Complexos Ubiquitina-Proteína Ligase/metabolismo , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Ciclo Celular , Sequência Consenso , Quinases Ciclina-Dependentes/metabolismo , Expressão Gênica , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Fosforilação , Proteínas Recombinantes de Fusão , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Complexos Ubiquitina-Proteína Ligase/isolamento & purificação
4.
Anal Chem ; 76(14): 4082-92, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15253646

RESUMO

Protein chip technology permits analysis of the expression and modification status of numerous targeted proteins within a single experiment, mainly through the use of antibody-based microarrays. Despite recent improvements in these protein chips, their applications are still limited for a variety of reasons, which include technical challenges in fabrication of the antibody chips as well as the very low specificity achieved by current detection methods. We have developed a unique approach for relative and/or absolute quantitation of protein expression and modification based on the capture of epitope peptides on affinity beads, which can be used to develop a mass-spectrometry-based protein chip technology. This new method, which utilizes antibodies immobilized on beads for the capture of target peptides, instead of proteins, eliminates many of the problems previously associated with protein chips. We present here several proof-of-principle experiments examining model peptides by this technique. These experiments show that the method is capable of (i). detecting peptides bound to a single antibody bead, (ii). detecting peptides at low (fmol) levels, (iii). producing MS/MS data of suitable quality for protein identification via database searching or de novo sequencing, (iv). quantitating peptides affinity-bound to antibody beads, (v). specifically detecting target peptides in complex mixtures over wide dynamic ranges, and (vi) is compatible with a microarray format for high-throughput analysis. Because our novel method uses antibody beads instead of a derivatized capture surface, and peptides instead of proteins for affinity capture, it can overcome many of the pitfalls of previous protein chip fabrications. Therefore, this method offers an improved approach to protein chip technology that should prove useful for diagnostics and drug development applications.


Assuntos
Espectrometria de Massas/métodos , Análise Serial de Proteínas/métodos , Proteínas/metabolismo , Anticorpos/metabolismo , Afinidade de Anticorpos , Cromatografia de Afinidade , Peptídeos/análise , Peptídeos/imunologia , Mapeamento de Interação de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA