Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 189(1): 49-65, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35139220

RESUMO

The endoplasmic reticulum (ER)-located ATP/ADP-antiporter (ER-ANT1) occurs specifically in vascular plants. Structurally different transporters mediate energy provision to the ER, but the cellular function of ER-ANT1 is still unknown. Arabidopsis (Arabidopsis thaliana) mutants lacking ER-ANT1 (er-ant1 plants) exhibit a photorespiratory phenotype accompanied by high glycine levels and stunted growth, pointing to an inhibition of glycine decarboxylase (GDC). To reveal whether it is possible to suppress this marked phenotype, we exploited the power of a forward genetic screen. Absence of a so far uncharacterized member of the HaloAcid Dehalogenase (HAD)-like hydrolase family strongly suppressed the dwarf phenotype of er-ant1 plants. Localization studies suggested that the corresponding protein locates to chloroplasts, and activity assays showed that the enzyme dephosphorylates, with high substrate affinity, the B6 vitamer pyridoxal 5'-phosphate (PLP). Additional physiological experiments identified imbalances in vitamin B6 homeostasis in er-ant1 mutants. Our data suggest that impaired chloroplast metabolism, but not decreased GDC activity, causes the er-ant1 mutant dwarf phenotype. We present a hypothesis, setting transport of PLP by ER-ANT1 and chloroplastic PLP dephosphorylation in the cellular context. With the identification of this HAD-type PLP phosphatase, we also provide insight into B6 vitamer homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Trifosfato de Adenosina/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Retículo Endoplasmático/metabolismo , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Fosfato de Piridoxal/metabolismo
2.
Int J Mol Sci ; 21(9)2020 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-32397251

RESUMO

The plasma membrane transporter SOS1 (SALT-OVERLY SENSITIVE1) is vital for plant survival under salt stress. SOS1 activity is tightly regulated, but little is known about the underlying mechanism. SOS1 contains a cytosolic, autoinhibitory C-terminal tail (abbreviated as SOS1 C-term), which is targeted by the protein kinase SOS2 to trigger its transport activity. Here, to identify additional binding proteins that regulate SOS1 activity, we synthesized the SOS1 C-term domain and used it as bait to probe Arabidopsis thaliana cell extracts. Several 14-3-3 proteins, which function in plant salt tolerance, specifically bound to and interacted with the SOS1 C-term. Compared to wild-type plants, when exposed to salt stress, Arabidopsis plants overexpressing SOS1 C-term showed improved salt tolerance, significantly reduced Na+ accumulation in leaves, reduced induction of the salt-responsive gene WRKY25, decreased soluble sugar, starch, and proline levels, less impaired inflorescence formation and increased biomass. It appears that overexpressing SOS1 C-term leads to the sequestration of inhibitory 14-3-3 proteins, allowing SOS1 to be more readily activated and leading to increased salt tolerance. We propose that the SOS1 C-term binds to previously unknown proteins such as 14-3-3 isoforms, thereby regulating salt tolerance. This finding uncovers another regulatory layer of the plant salt tolerance program.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Tolerância ao Sal/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biomassa , Citosol/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Folhas de Planta/metabolismo , Prolina/metabolismo , Ligação Proteica , Domínios Proteicos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Amido/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
3.
Plant Cell ; 21(3): 876-91, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19293370

RESUMO

Nucleoside degradation and salvage are important metabolic pathways but hardly understood in plants. Recent work on human pathogenic protozoans like Leishmania and Trypanosoma substantiates an essential function of nucleosidase activity. Plant nucleosidases are related to those from protozoans and connect the pathways of nucleoside degradation and salvage. Here, we describe the cloning of such an enzyme from Arabidopsis thaliana, Uridine-Ribohydrolase 1 (URH1) and the characterization by complementation of a yeast mutant. Furthermore, URH1 was synthesized as a recombinant protein in Escherichia coli. The pure recombinant protein exhibited highest hydrolase activity for uridine, followed by inosine and adenosine, the corresponding K(m) values were 0.8, 1.4, and 0.7 mM, respectively. In addition, URH1 was able to cleave the cytokinin derivative isopentenyladenine-riboside. Promoter beta-glucuronidase fusion studies revealed that URH1 is mainly transcribed in the vascular cells of roots and in root tips, guard cells, and pollen. Mutants expressing the Arabidopsis enzyme or the homolog from rice (Oryza sativa) exhibit resistance toward toxic fluorouridine, fluorouracil, and fluoroorotic acid, providing clear evidence for a pivotal function of URH1 as regulative in pyrimidine degradation. Moreover, mutants with increased and decreased nucleosidase activity are delayed in germination, indicating that this enzyme activity must be well balanced in the early phase of plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , N-Glicosil Hidrolases/metabolismo , Uridina/metabolismo , Sequência de Aminoácidos , Antocianinas/metabolismo , Proteínas de Arabidopsis/genética , Arginina/metabolismo , Teste de Complementação Genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Mutação , N-Glicosil Hidrolases/genética , Nitrogênio/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA