Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 19007, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149170

RESUMO

Biochar (BC) and magnetite (Fe3O4) nanoparticles (MNP) have both received considerable recent attention in part due to their potential use in water treatment. While both are effective independently in the removal of a range of anionic metals from aqueous solution, the efficacy of these materials is reduced considerably at neutral pH due to decreased metal adsorption and MNP aggregation. In addition to synthetic metal oxide-biochar composites for use in treatment and remediation technologies, aggregates may also occur in nature when pyrolytic carbon is deposited in soils. In this study, we tested whether magnetite synthesized in the presence of biochar leads to increased removal efficiency of hexavalent chromium, Cr(VI), at the mildly acidic to neutral pH values characteristic of most natural and contaminated aqueous environments. To do so, magnetite nanoparticles and biochar produced from ground willow were synthesized to form composites (MNP-BC). Batch studies showed that MNP-BC markedly enhanced both adsorption and reduction of Cr(VI) from aqueous solution at acidic to neutral pH as compared to MNP and BC separately, suggesting a strong synergetic effect of hybridizing Fe3O4 with BC. Mechanistically, the Cr(VI) removal processes occurred through both adsorption and intraparticle diffusion followed by reduction to Cr(III). Synchrotron-based X-ray absorption spectroscopy analyses confirmed that Cr(VI) was reduced at the surface of MNP-BC, with electrons derived directly from both biochar and magnetite at low pH, while at near-neutral pH, biochar increased Cr(VI) reduction by inhibiting MNP aggregation. Extended X-ray absorption fine structure fitting results confirmed that the Cr(III) precipitates consist of Cr(OH)3 and chromite (Cr2FeO4) nanoparticles. Our results demonstrate that MNP-BC composites have great potential as a material for the treatment of chromate-containing aqueous solutions across a wide range of pH values, and provide information valuable broadly relevant to soils and sediments that contain biochar.

2.
Environ Microbiol ; 20(10): 3462-3483, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30058270

RESUMO

Iron is the most abundant redox-active metal in the Earth's crust. The one electron transfer between the two most common redox states, Fe(II) and Fe(III), plays a role in a huge range of environmental processes from mineral formation and dissolution to contaminant remediation and global biogeochemical cycling. It has been appreciated for more than a century that microorganisms can harness the energy of this Fe redox transformation for their metabolic benefit. However, this is most widely understood for anaerobic Fe(III)-reducing or aerobic and microaerophilic Fe(II)-oxidizing bacteria. Only in the past few decades have we come to appreciate that bacteria also play a role in the anaerobic oxidation of ferrous iron, Fe(II), and thus can act to form Fe(III) minerals in anoxic settings. Since this discovery, our understanding of the ecology of these organisms, their mechanisms of Fe(II) oxidation and their role in environmental processes has been increasing rapidly. In this article, we bring these new discoveries together to review the current knowledge on these environmentally important bacteria, and reveal knowledge gaps for future research.


Assuntos
Bactérias/metabolismo , Compostos Ferrosos/metabolismo , Compostos Férricos/metabolismo , Oxirredução , Microbiologia do Solo , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA