Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Mov Ecol ; 9(1): 22, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33947478

RESUMO

BACKGROUND: According to central place foraging theory, animals will only increase the distance of their foraging trips if more distant prey patches offer better foraging opportunities. Thus, theory predicts that breeding seabirds in large colonies could create a zone of food depletion around the colony, known as "Ashmole's halo". However, seabirds' decisions to forage at a particular distance are likely also complicated by their breeding stage. After chicks hatch, parents must return frequently to feed their offspring, so may be less likely to visit distant foraging patches, even if their quality is higher. However, the interaction between prey availability, intra-specific competition, and breeding stage on the foraging decisions of seabirds is not well understood. The aim of this study was to address this question in chinstrap penguins Pygoscelis antarcticus breeding at a large colony. In particular, we aimed to investigate how breeding stage affects foraging strategy; whether birds foraging far from the colony visit higher quality patches than available locally; and whether there is evidence for intraspecific competition, indicated by prey depletions near the colony increasing over time, and longer foraging trips. METHODS: We used GPS and temperature-depth recorders to track the foraging movements of 221 chinstrap penguins from 4 sites at the South Orkney Islands during incubation and brood. We identified foraging dives and calculated the index of patch quality based on time allocation during the dive to assess the quality of the foraging patch. RESULTS: We found that chinstrap penguin foraging distance varied between stages, and that trips became shorter as incubation progressed. Although patch quality was lower near the colony than at more distant foraging patches, patch quality near the colony improved over the breeding season. CONCLUSIONS: These results suggest chinstrap penguin foraging strategies are influenced by both breeding stage and prey distribution, and the low patch quality near the colony may be due to a combination of depletion by intraspecific competition but compensated by natural variation in prey. Reduced trip durations towards the end of the incubation period may be due to an increase in food availability, as seabirds time their reproduction so that the period of maximum energy demand in late chick-rearing coincides with maximum resource availability in the environment. This may also explain why patch quality around the colony improved over the breeding season. Overall, our study sheds light on drivers of foraging decisions in colonial seabirds, an important question in foraging ecology.

3.
PLoS One ; 16(3): e0248071, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33662029

RESUMO

The diet of Antarctic fur seals (Arctocephalus gazella) at South Georgia is dominated by Antarctic krill (Euphausia superba). During the breeding season, foraging trips by lactating female fur seals are constrained by their need to return to land to provision their pups. Post-breeding, seals disperse in order to feed and recover condition; estimates indicate c.70% of females remain near to South Georgia, whilst others head west towards the Patagonian Shelf or south to the ice-edge. The krill fishery at South Georgia operates only during the winter, providing the potential for fur seal: fishery interaction during these months. Here we use available winter (May to September) tracking data from Platform Terminal Transmitter (PTT) tags deployed on female fur seals at Bird Island, South Georgia. We develop habitat models describing their distribution during the winters of 1999 and 2003 with the aim of visualising and quantifying the degree of spatial overlap between female fur seals and krill harvesting in South Georgia waters. We show that spatial distribution of fur seals around South Georgia is extensive, and that the krill fishery overlaps with small, highly localised areas of available fur seal habitat. From these findings we discuss the implications for management, and future work.


Assuntos
Euphausiacea/fisiologia , Pesqueiros , Otárias/fisiologia , Distribuição Animal , Migração Animal , Animais , Ilhas Atlânticas , Oceano Atlântico , Cruzamento , Ecossistema , Feminino , Ilhas , Masculino , Estações do Ano
5.
Sci Rep ; 9(1): 8517, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186455

RESUMO

The Patagonian Shelf Large Marine Ecosystem supports high levels of biodiversity and endemism and is one of the most productive marine ecosystems in the world. Despite the important role marine predators play in structuring the ecosystems, areas of high diversity where multiple predators congregate remains poorly known on the Patagonian Shelf. Here, we used biotelemetry and biologging tags to track the movements of six seabird species and three pinniped species breeding at the Falkland Islands. Using Generalized Additive Models, we then modelled these animals' use of space as functions of dynamic and static environmental indices that described their habitat. Based on these models, we mapped the predicted distribution of animals from both sampled and unsampled colonies and thereby identified areas where multiple species were likely to overlap at sea. Maximum foraging trip distance ranged from 79 to 1,325 km. However, most of the 1,891 foraging trips by 686 animals were restricted to the Patagonian Shelf and shelf slope, which highlighted a preference for these habitats. Of the seven candidate explanatory covariates used to predict distribution, distance from the colony was retained in models for all species and negatively affected the probability of occurrence. Predicted overlap among species was highest on the Patagonian Shelf around the Falkland Islands and the Burdwood Bank. The predicted area of overlap is consistent with areas that are also important habitat for marine predators migrating from distant breeding locations. Our findings provide comprehensive multi-species predictions for some of the largest marine predator populations on the Patagonian Shelf, which will contribute to future marine spatial planning initiatives. Crucially, our findings highlight that spatially explicit conservation measures are likely to benefit multiple species, while threats are likely to impact multiple species.


Assuntos
Organismos Aquáticos/fisiologia , Cruzamento , Ecossistema , Oceanos e Mares , Comportamento Predatório/fisiologia , Animais , Área Sob a Curva , Ilhas Malvinas , Geografia , Telemetria
6.
Ecol Evol ; 8(21): 10520-10529, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30464824

RESUMO

AIM: To provide a method of analyzing penguin tracking data to identify priority at-sea areas for seabird conservation (marine IBAs), based on pre-existing approaches for flying seabirds but revised according to the specific ecology of Pygoscelis penguin species. LOCATION: Waters around the Antarctic Peninsula, South Shetland, and South Orkney archipelagos (FAO Subareas 48.1 and 48.2). METHODS: We made key improvements to the pre-existing protocol for identifying marine IBAs that include refining the track interpolation method and revision of parameters for the kernel analysis (smoothing factor and utilization distribution) using sensitivity tests. We applied the revised method to 24 datasets of tracking data on penguins (three species, seven colonies, and three different breeding stages-incubation, brood, and crèche). RESULTS: We identified five new marine IBAs for seabirds in the study area, estimated to hold ca. 600,000 adult penguins. MAIN CONCLUSIONS: The results demonstrate the efficacy of a new method for the designation of a network of marine IBAs in Antarctic waters for penguins based on tracking data, which can contribute to an evidence-based, precautionary, management framework for krill fisheries.

7.
PLoS One ; 11(3): e0150592, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27031616

RESUMO

During the breeding season seabirds are constrained to coastal areas and are restricted in their movements, spending much of their time in near-shore waters either loafing or foraging. However, in using these areas they may be threatened by anthropogenic activities such as fishing, watersports and coastal developments including marine renewable energy installations. Although many studies describe large scale interactions between seabirds and the environment, the drivers behind near-shore, fine-scale distributions are not well understood. For example, Alderney is an important breeding ground for many species of seabird and has a diversity of human uses of the marine environment, thus providing an ideal location to investigate the near-shore fine-scale interactions between seabirds and the environment. We used vantage point observations of seabird distribution, collected during the 2013 breeding season in order to identify and quantify some of the environmental variables affecting the near-shore, fine-scale distribution of seabirds in Alderney's coastal waters. We validate the models with observation data collected in 2014 and show that water depth, distance to the intertidal zone, and distance to the nearest seabird nest are key predictors in the distribution of Alderney's seabirds. AUC values for each species suggest that these models perform well, although the model for shags performed better than those for auks and gulls. While further unexplained underlying localised variation in the environmental conditions will undoubtedly effect the fine-scale distribution of seabirds in near-shore waters we demonstrate the potential of this approach in marine planning and decision making.


Assuntos
Biodiversidade , Cruzamento , Charadriiformes/fisiologia , Modelos Teóricos , Estações do Ano , Animais , Ilhas , Curva ROC , Reino Unido
8.
Ecol Evol ; 5(20): 4642-54, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26668729

RESUMO

Quantifying the behavior of motile, free-ranging animals is difficult. The accelerometry technique offers a method for recording behaviors but interpretation of the data is not straightforward. To date, analysis of such data has either involved subjective, study-specific assignments of behavior to acceleration data or the use of complex analyses based on machine learning. Here, we present a method for automatically classifying acceleration data to represent discrete, coarse-scale behaviors. The method centers on examining the shape of histograms of basic metrics readily derived from acceleration data to objectively determine threshold values by which to separate behaviors. Through application of this method to data collected on two distinct species with greatly differing behavioral repertoires, kittiwakes, and humans, the accuracy of this approach is demonstrated to be very high, comparable to that reported for other automated approaches already published. The method presented offers an alternative to existing methods as it uses biologically grounded arguments to distinguish behaviors, it is objective in determining values by which to separate these behaviors, and it is simple to implement, thus making it potentially widely applicable. The R script coding the method is provided.

9.
Biol Open ; 4(10): 1298-305, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26369928

RESUMO

During the breeding season, seabirds adopt a central place foraging strategy and are restricted in their foraging range by the fasting ability of their partner/chick and the cost of commuting between the prey resources and the nest. Because of the spatial and temporal variability of marine ecosystems, individuals must adapt their behaviour to increase foraging success within these constraints. The at-sea movements, foraging behaviour and effort of the Australasian gannet (Morus serrator) was determined over three sequential breeding seasons of apparent differing prey abundance to investigate how the species adapts to inter-annual fluctuations in food availability. GPS and tri-axial accelerometer data loggers were used to compare the degree of annual variation within two stages of breeding (incubation and chick rearing) at a small gannet colony situated between two larger, nearby colonies. Interestingly, neither males nor females increased the total distance travelled or duration of foraging trip in any breeding stage (P>0.05 in all cases) despite apparent low prey availability. However, consistently within each breeding stage, mean vectorial dynamic body acceleration (an index of energy expenditure) was greater in years of poorer breeding success (increased by a factor of three to eight), suggesting birds were working harder within their range. Additionally, both males and females increased the proportion of a foraging trip spent foraging in a poorer year across both breeding stages. Individuals from this colony may be limited in their ability to extend their range in years of low prey availability due to competition from conspecifics in nearby colonies and, consequently, increase foraging effort within this restricted foraging area.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA