Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Access Microbiol ; 5(9)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841097

RESUMO

γ-butyrolactone and related signalling systems are found in Streptomyces and other actinobacteria where they control the production of secondary or specialized metabolites such as antibiotics. Genetic manipulation of these regulatory systems therefore leads to changes in the secondary metabolite profile of a strain and has been used to activate previously silent secondary metabolite gene clusters. However, there is no easy way to assess the presence of γ-butyrolactone-like systems in Streptomyces strains without whole-genome sequencing. We have therefore developed and tested a PCR screen that is able to detect homologues of the commonly co-located butenolide synthase and γ-butyrolactone receptor genes. This PCR screen could be employed for the screening of strain libraries to detect signalling systems without the necessity for whole-genome sequencing.

2.
J Nat Prod ; 85(5): 1239-1247, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35422124

RESUMO

Here, we describe two N-acetyl-cysteinylated streptophenazines (1 and 2) produced by the soil-derived Streptomyces sp. ID63040 and identified through a metabolomic approach. These metabolites attracted our interest due to their low occurrence frequency in a large library of fermentation broth extracts and their consistent presence in biological replicates of the producer strain. The compounds were found to possess broad-spectrum antibacterial activity while exhibiting low cytotoxicity. The biosynthetic gene cluster from Streptomyces sp. ID63040 was found to be highly similar to the streptophenazine reference cluster in the MIBiG database, which originates from the marine Streptomyces sp. CNB-091. Compounds 1 and 2 were the main streptophenazine products from Streptomyces sp. ID63040 at all cultivation times but were not detected in Streptomyces sp. CNB-091. The lack of obvious candidates for cysteinylation in the Streptomyces sp. ID63040 biosynthetic gene cluster suggests that the N-acetyl-cysteine moiety derives from cellular functions, most likely from mycothiol. Overall, our data represent an interesting example of how to leverage metabolomics for the discovery of new natural products and point out the often-neglected contribution of house-keeping cellular functions to natural product diversification.


Assuntos
Produtos Biológicos , Streptomyces , Antibacterianos/metabolismo , Produtos Biológicos/metabolismo , Metabolômica , Família Multigênica , Streptomyces/genética
3.
ISME J ; 16(1): 101-111, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34253854

RESUMO

The growing problem of antibiotic resistance has led to the exploration of uncultured bacteria as potential sources of new antimicrobials. PCR amplicon analyses and short-read sequencing studies of samples from different environments have reported evidence of high biosynthetic gene cluster (BGC) diversity in metagenomes, indicating their potential for producing novel and useful compounds. However, recovering full-length BGC sequences from uncultivated bacteria remains a challenge due to the technological restraints of short-read sequencing, thus making assessment of BGC diversity difficult. Here, long-read sequencing and genome mining were used to recover >1400 mostly full-length BGCs that demonstrate the rich diversity of BGCs from uncultivated lineages present in soil from Mars Oasis, Antarctica. A large number of highly divergent BGCs were not only found in the phyla Acidobacteriota, Verrucomicrobiota and Gemmatimonadota but also in the actinobacterial classes Acidimicrobiia and Thermoleophilia and the gammaproteobacterial order UBA7966. The latter furthermore contained a potential novel family of RiPPs. Our findings underline the biosynthetic potential of underexplored phyla as well as unexplored lineages within seemingly well-studied producer phyla. They also showcase long-read metagenomic sequencing as a promising way to access the untapped genetic reservoir of specialised metabolite gene clusters of the uncultured majority of microbes.


Assuntos
Metagenoma , Solo , Regiões Antárticas , Bactérias/genética , Bactérias/metabolismo , Metagenômica , Família Multigênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA