Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Cancers (Basel) ; 16(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38792011

RESUMO

Prostate cancer (PCa) is the most frequently diagnosed cancer and second leading cause of cancer deaths among American men. Androgen deprivation therapy (ADT) has been systemically applied as a first-line therapy for PCa patients. Despite the initial responses, the majority of patients under ADT eventually experienced tumor progression to castration-resistant prostate cancer (CRPC), further leading to tumor metastasis to distant organs. Therefore, identifying the key molecular mechanisms underlying PCa progression remains crucial for the development of novel therapies for metastatic PCa. Previously, we identified that tumor-suppressive miR-99b-5p is frequently downregulated in aggressive African American (AA) PCa and European American (EA) CRPC, leading to upregulation of mTOR, androgen receptor (AR), and HIF-1α signaling. Given the fact that mTOR and HIF-1α signaling are critical upstream pathways that trigger the activation of epithelial-mesenchymal transition (EMT), we hypothesized that miR-99b-5p may play a critical functional role in regulating EMT-mediated PCa metastasis. To test this hypothesis, a series of cell biology, biochemical, and in vitro functional assays (wound healing, transwell migration, cell/ECM adhesion, and capillary-like tube formation assays) were performed to examine the effects of miR-99b-5p mimic on regulating EMT-mediated PCa metastasis processes. Our results have demonstrated that miR-99b-5p simultaneously targets MTOR and AR signaling, leading to upregulation of E-cadherin, downregulation of Snail/N-cadherin/Vimentin, and suppression of EMT-mediated PCa metastasis. MiR-99b-5p alone and in combination with enzalutamide or abiraterone significantly inhibits the EMT-mediated metastasis of AA PCa and EA CRPC.

2.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256166

RESUMO

Prostate cancer (PCa) has been known as the most prevalent cancer disease and the second leading cause of cancer mortality in men almost all over the globe. There is an urgent need for establishment of PCa models that can recapitulate the progress of genomic landscapes and molecular alterations during development and progression of this disease. Notably, several organoid models have been developed for assessing the complex interaction between PCa and its surrounding microenvironment. In recent years, PCa organoids have been emerged as powerful in vitro 3D model systems that recapitulate the molecular features (such as genomic/epigenomic changes and tumor microenvironment) of PCa metastatic tumors. In addition, application of organoid technology in mechanistic studies (i.e., for understanding cellular/subcellular and molecular alterations) and translational medicine has been recognized as a promising approach for facilitating the development of potential biomarkers and novel therapeutic strategies. In this review, we summarize the application of PCa organoids in the high-throughput screening and establishment of relevant xenografts for developing novel therapeutics for metastatic, castration resistant, and neuroendocrine PCa. These organoid-based studies are expected to expand our knowledge from basic research to clinical applications for PCa diseases. Furthermore, we also highlight the optimization of PCa cultures and establishment of promising 3D organoid models for in vitro and in vivo investigations, ultimately facilitating mechanistic studies and development of novel clinical diagnosis/prognosis and therapies for PCa.


Assuntos
Medicina de Precisão , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Próstata , Organoides , Epigenômica , Microambiente Tumoral
3.
Curr Pharm Des ; 29(43): 3428-3441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38038007

RESUMO

AIM: Alzheimer's disease (AD) has been identified as a progressive brain disorder associated with memory dysfunction and the accumulation of ß-amyloid plaques and neurofibrillary tangles of τ protein. Mitochondria is crucial in maintaining cell survival, cell death, calcium regulation, and ATP synthesis. Mitochondrial dysfunction and linked calcium overload have been involved in the pathogenesis of AD. CRM2 (Collapsin response mediator protein-2) is involved in endosomal lysosomal trafficking as well as autophagy, and their reduced level is also a primary culprit in the progression of AD. In addition, Cholinergic neurotransmission and neuroinflammation are two other mechanisms implicated in AD onset and might be protective targets to attenuate disease progression. The microbiota-gut-brain axis (MGBA) is another crucial target for AD treatment. Crosstalk between gut microbiota and brain mutually benefitted each other, dysbiosis in gut microbiota affects the brain functions and leads to AD progression with increased AD-causing biomarkers. Despite the complexity of AD, treatment is only limited to symptomatic management. Therefore, there is an urgent demand for novel therapeutics that target associated pathways responsible for AD pathology. This review explores the role of different mechanisms involved in AD and possible therapeutic targets to protect against disease progression. BACKGROUND: Amidst various age-related diseases, AD is the most deleterious neurodegenerative disorder that affects more than 24 million people globally. Every year, approximately 7.7 million new cases of dementia have been reported. However, to date, no novel disease-modifying therapies are available to treat AD. OBJECTIVE: The aim of writing this review is to highlight the role of key biomarker proteins and possible therapeutic interventions that could play a crucial role in mitigating the ongoing prognosis of Alzheimer's disease. MATERIALS AND METHODS: The available information about the disease was collected through multiple search engines, including PubMed, Science Direct, Clinical Trials, and Google Scholar. RESULTS: Accumulated pieces of evidence reveal that extracellular aggregation of ß-amyloid plaques and intracellular tangles of τ protein are peculiar features of perpetuated Alzheimer's disease (AD). Further, the significant role of mitochondria, calcium, and cholinergic pathways in the pathogenesis of AD makes the respiratory cell organelle a crucial therapeutic target in this neurodegenerative disease. All currently available drugs either delay the clinical damage to cells or temporarily attenuate some symptoms of Alzheimer's disease. CONCLUSION: The pathological features of AD are extracellular deposition of ß-amyloid, acetylcholinesterase deregulation, and intracellular tangles of τ protein. The multifactorial heterogeneity of disease demands more research work in this field to find new therapeutic biological targets.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Proteínas tau , Placa Amiloide , Acetilcolinesterase , Cálcio , Peptídeos beta-Amiloides/metabolismo , Progressão da Doença , Colinérgicos/uso terapêutico
4.
Front Oncol ; 13: 1184186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023145

RESUMO

Introduction: African American (AA) men exhibited 2.3-fold higher PCa incidence and 1.7-fold higher PCa mortality rates when compared to the European American (EA) men. Besides the socioeconomic factors, emerging evidence has highlighted that biological risk factors may play critical roles in the AA PCa disparities. Previously, we have shown that downregulated miR-99b-5p and upregulated mTOR cooperatively promotes the AA PCa aggressiveness and drug resistance. Methods: In this study, we aimed to explore the miR-99b-5p/mTOR/AR/SMARCD1 signaling axis in AA PCa aggressiveness. The analyses used in the study included immunofluorescence, western blot, in-vitro functional assays (TUNEL, colony forming, and MTT), and chromatin immunoprecipitation (ChIP)-qPCR assays in 2D and/or 3D culture model of EA PCa and AA PCa cell lines. Results: Specifically, the immunofluorescence staining, and western blot analysis has revealed that nuclear mTOR, AR, and SMARCD1 were highly expressed in AA PCa (MDA PCa 2b) compared to EA PCa (LNCaP) cell line. Western blot analysis further revealed that miR-99b-5p inhibited protein levels of mTOR, AR/AR-V7 and SMARCD1 in cytoplasm and nuclei of EA and AA PCa. The in-vitro functional (MTT, TUNEL, and clonogenic) assays have demonstrated that miR-99b-5p effectively inhibited cell proliferation/survival and induced cell apoptosis in EA and AA PCa cells. Moreover, combination of miR-99b-5p and enzalutamide (Enz) synergistically enhances the cytotoxicity against aggressive AA PCa and castration-resistant prostate cancer (CRPC). mTOR ChIP-qPCR assays further demonstrated that miR-99b-5p or miR-99b-5p/Enz significantly reduces the recruitment of mTOR to the genes involved in the metabolic reprogramming in CRPC. Discussion: Taken together, miR-99b-5p may function as an epigenomic driver to modulate the mTOR/AR/SMARCD1 signaling axis in AA PCa and resistant CRPC.

5.
Mar Drugs ; 21(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37623714

RESUMO

Alzheimer's disease (AD) is a major type of dementia disorder. Common cognitive changes occur as a result of cerebrovascular damage (CVD) via the disruption of matrix metalloproteinase-13 (MMP-13). In diabetic cases, the progress of vascular dementia is faster and the AD rate is higher. Patients with type 2 diabetes are known to have a higher risk of the factor for AD progression. Hence, this study is designed to investigate the role of astaxanthin (AST) in CVD-associated AD in zebrafish via the inhibition of MMP-13 activity. CVD was developed through the intraperitoneal and intracerebral injection of streptozotocin (STZ). The AST (10 and 20 mg/L), donepezil (1 mg/L), and MMP-13 inhibitor (i.e., CL-82198; 10 µM) were exposed for 21 consecutive days in CVD animals. The cognitive changes in zebrafish were evaluated through light and dark chamber tests, a color recognition test, and a T-maze test. The biomarkers of AD pathology were assessed via the estimation of the cerebral extravasation of Evans blue, tissue nitrite, amyloid beta-peptide aggregation, MMP-13 activity, and acetylcholinesterase activity. The results revealed that exposure to AST leads to ameliorative behavioral and biochemical changes. Hence, AST can be used for the management of AD due to its multi-targeted actions, including MMP-13 inhibition.


Assuntos
Doença de Alzheimer , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Animais , Doença de Alzheimer/tratamento farmacológico , Peixe-Zebra , Peptídeos beta-Amiloides , Metaloproteinase 13 da Matriz , Acetilcolinesterase
6.
Cells ; 12(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37626874

RESUMO

Circulatory GSK3ß is recognized as a biomarker and therapeutic target for diseases, including myocardial diseases. However, its potential as a target for myocardial ischemia-reperfusion injury (IR) in the presence of PM2.5 exposure is unclear. Wistar rats underwent IR following either a 21-day or single exposure to PM2.5 at a concentration of 250 µg/m3. The effects of GSK3ß inhibitor on cardiac physiology, tissue injury, mitochondrial function, and the PI3K/AKT/GSK3ß signalling axis were examined. The inhibitor was not effective in improving hemodynamics or reducing IR-induced infarction in the myocardium exposed to PM2.5 for 21 days. However, for a single-day exposure, the inhibitor showed potential in mitigating cardiac injury. In normal hearts undergoing IR, the inhibitor activated the PI3K/AKT signalling pathway, improved mitochondrial function, and reduced oxidative stress. These positive effects were not observed in PM2.5-exposed rats. Furthermore, the inhibitor stimulated autophagy in hearts exposed to PM2.5 for 21 days and subjected to IR, resulting in increased mTOR expression and decreased AMPK expression. In normal hearts and those exposed to a single dose of PM2.5, the inhibitor effectively activated the PI3K/Akt/AMPK axis. These findings suggest that GSK3ß may not be a reliable therapeutic target for IR in the presence of chronic PM2.5 exposure.


Assuntos
Traumatismo por Reperfusão Miocárdica , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta , Ratos Wistar , Proteínas Quinases Ativadas por AMP , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Material Particulado/toxicidade
7.
J Biomol Struct Dyn ; : 1-9, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528651

RESUMO

The endoplasmic reticulum (ER) has been considered as the key site of protein biosynthesis and maturation in the eukaryotic cell. In recent years, the sequence at the N-terminal region of translated protein has shown a particular emphasis as a signal responsible for site-specific translocation mediated by post-translational modification. Once the native conformation is not achieved, the degradation pathway is activated, and therefore the restoration of the homeostasis of ER function in UPR pathway is initiated. One of the transmembrane proteins, PKR-like ER kinase (PERK) plays a key role in the activation of UPR through the inhibition of the translation process, thus preventing the cells from apoptosis due to chronic ER stress. Dysregulation of the neuronal proteostasis often results in neuronal dysfunction and its crucially associated neurodegenerative diseases or its manifestation of neuropathic pain. The correlation between ER stress and its associated signaling cascade, namely UPR, is well established in context of neuropathological modifications. This furthermore suggests that the proteins of the signaling cascade such as PERK can serve as a potential target during the onset of neuronal damage. The aim of this study was to identify the potential phytocompounds by evaluating the physicochemical properties, Lipinski screening, ADMET and toxicity properties of the selected phytocompounds by using SwissADME, MolInspiration and pKCSM webservers, which could establish a comparatively better affinity and binding energy than the control drug as GSK2606414 in set up the treatment of the neuronal diseases through molecular docking via PyRx and validating their structural stability through simulation using the Sybyl software for over100ns.Communicated by Ramaswamy H. Sarma.

8.
Artigo em Inglês | MEDLINE | ID: mdl-37466884

RESUMO

For the past decades, inflammatory signals have been considered a possible key for pharmacological interventions. There are several compounds and/or molecules that have been known as most promising medication against inflammation and its mediated chronic disorders. Inflammasomes could be recognized as a trigger by detrimental stimuli as pathogenic attack and endogenous signals mediated injury inside the cells. In addition, there has been an inflammatory key mechanism involved in cancers including glioblastoma multiforme (GBM). GBM has been considered the foremost aggressive primary brain tumors in adult stage. There is a scattered beam of light on both cellular and molecular links in inflammation and GBM. However, the immune response of GBM has been characterized extensively by macrophages and lymphocytes related to tumors, and some recent investigations have pinpointed the focus of inflammasomes on the progression of GBM. Nevertheless, risk factors linked with GBM are still debatable. In our study, the most considerable compounds and their bonded and/or targeted proteins have depicted the most promising highlights under in silico condition. Our in silico investigations have revealed a powerful pharmacological agents/compound against inflammasome-mediated GBM.

9.
J Clin Med ; 12(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37373839

RESUMO

Global DNA hypermethylation and mitochondrial dysfunction are reported to be associated with the development of mild cognitive decline (MCI). The present study aims to generate preliminary data that connect the above association with post-surgical coronary artery bypass grafting (CABG) cognitive decline in patients. Data were collected from 70 CABG patients and 25 age-matched controls. Cognitive function was assessed using the Montreal Cognitive Assessment (MOCA) test on day 1 (before surgery) and on the day of discharge. Similarly, blood was collected before and one day after the CABG procedure for mitochondrial functional analysis and expression of DNA methylation genes. Test analysis score suggested 31 (44%) patients had MCI before discharge. These patients showed a significant decrease in complex I activity and an increase in malondialdehyde levels (p < 0.001) from the control blood samples. Post-surgical samples showed a significant reduction in blood MT-ND1 mRNA expression from control and from pre-surgical samples (p < 0.005), along with elevated DNMT1 gene expression (p < 0.047), with an insignificant increase in TET1 and TET3 gene expression. Correlation analysis showed a significant positive relation between cognitive decline and elevated blood DNMT1 and declined blood complex I activity, signifying that cognitive decline experienced by post-surgical CABG patients is associated with increased DNMT1 expression and declined complex I activity. Based on the data, we conclude that both DNA hypermethylation and mitochondrial dysfunction are associated with post-CABG MCI, where the former is negatively correlated, and the latter is positively correlated with post-surgical MCI in CABG cases. Additionally, a multimarker approach that comprises MOCA, DNA methylation, DNMT, and NQR activities can be utilized to stratify the population that is sensitive to developing post-CABG MCI.

10.
Eur J Pharmacol ; 954: 175832, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37329974

RESUMO

The onset and progression of Alzheimer's disease (AD) are influenced by a variety of factors. These include oxidative stress, overexpression of acetylcholinesterase (AChE), depletion of acetylcholine levels, increased beta-secretase mediated conversion of Amyloid Precursor Protein (APP) to Amyloid Beta (Abeta), accumulation of Abeta oligomers, decrease in Brain Derived Neurotrophic factor (BDNF) and accelerated neuronal apoptosis due to elevated levels of caspase-3. The currently available therapeutic approaches are inadequate in affecting these pathological processes except maybe the overexpression of AChE (AChE inhibitors like donepezil, rivastigmine). There is an urgent need to develop disease modifying pharmacotherapeutic interventions which have appreciable safety and cost effectiveness. From previously reported in vitro studies and a preliminary assessment of neuroprotective effect in scopolamine induced dementia-like cognitive impairment in mice, vanillin has been used as the compound of interest in the present study. Vanillin, a phytoconstituent, has been used in humans, safely, in the form of a flavouring agent for various foods, beverages, and cosmetics. Owing to its chemical nature i.e. being a phenolic aldehyde, it has an additional antioxidant property that is congruent to the desirable characteristics that are sought in a suitable novel anti-AD agent. In our study, vanillin proved to have a nootropic effect in healthy Swiss albino mice as well as an ameliorative effect in aluminium chloride and D-galactose induced AD model in mice. Apart from tackling oxidative stress, vanillin was found to reduce the levels of AChE, beta secretase, caspase-3, enhance degradation of Abeta plaques and elevate the levels of BDNF, in cortical and hippocampal regions. Vanillin is a promising candidate for being incorporated into the search for safe and effective anti-AD molecules. However, further research might be needed to warrant its application clinically.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Cloreto de Alumínio , Peptídeos beta-Amiloides/metabolismo , Galactose/efeitos adversos , Caspase 3/metabolismo , Fator Neurotrófico Derivado do Encéfalo , Acetilcolinesterase/metabolismo , Modelos Animais de Doenças
11.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982637

RESUMO

Cancer has been progressively a major global health concern. With this developing global concern, cancer determent is one of the most significant public health challenges of this era. To date, the scientific community undoubtedly highlights mitochondrial dysfunction as a hallmark of cancer cells. Permeabilization of the mitochondrial membranes has been implicated as the most considerable footprint in apoptosis-mediated cancer cell death. Under the condition of mitochondrial calcium overload, exclusively mediated by oxidative stress, an opening of a nonspecific channel with a well-defined diameter in mitochondrial membrane allows free exchange between the mitochondrial matrix and the extra mitochondrial cytosol of solutes and proteins up to 1.5 kDa. Such a channel/nonspecific pore is recognized as the mitochondrial permeability transition pore (mPTP). mPTP has been established for regulating apoptosis-mediated cancer cell death. It has been evident that mPTP is critically linked with the glycolytic enzyme hexokinase II to defend cellular death and reduce cytochrome c release. However, elevated mitochondrial Ca2+ loading, oxidative stress, and mitochondrial depolarization are critical factors leading to mPTP opening/activation. Although the exact mechanism underlying mPTP-mediated cell death remains elusive, mPTP-mediated apoptosis machinery has been considered as an important clamp and plays a critical role in the pathogenesis of several types of cancers. In this review, we focus on structure and regulation of the mPTP complex-mediated apoptosis mechanisms and follow with a comprehensive discussion addressing the development of novel mPTP-targeting drugs/molecules in cancer treatment.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Neoplasias , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Morte Celular , Apoptose , Cálcio/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo
12.
Life Sci ; 328: 121403, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669677

RESUMO

AIM: Due to the growing commercialization of titanium dioxide nanoparticles (TNPs), it is necessary to use these particles in a manner that is safe, healthy and environmental friendly. Through reactive oxygen species (ROS) generation, it has been discovered that TNPs have a harmful effect on the brain. The aim of this study is to provide valuable insights into the possible mechanisms of TNPs induced mitochondrial dysfunction in brain and its amelioration by nutraceuticals, quercetin (QR) and melatonin (Mel) in in vitro and in vivo conditions. MATERIALS AND METHODS: Whole brain mitochondrial sample was used for in-vitro evaluation. Pre-treatment of QR (30 µM) and Mel (100 µM) at 25 °C for 1 h was given prior to TNPs (50 µg/ml) exposure. For in-vivo study, male Wistar rats were divided into four groups. Group I was control and group II was exposed to TNPs (5 mg/kg b.wt., i.v.). QR (5 mg/kg b.wt.) and Mel (5 mg/kg b.wt.) were given orally as pre-treatment in groups III and IV, respectively. Biochemical parameters, neurobehavioural paradigms, mitochondrial respiration, neuronal architecture assessment were assessed. KEY FINDINGS: QR and Mel restored the mitochondrial oxidative stress biomarkers in both the studies. Additionally, these nutraceuticals resuscitated the neurobehavioural alterations and restored the neuronal architecture alterations in TNPs exposed rats. The mitochondrial dysfunction induced by TNPs was also ameliorated by QR and Mel by protecting the mitochondrial complex activity and mitochondrial respiration rate. SIGNIFICANCE: Results of the study demonstrated that QR and Mel ameliorated mitochondrial mediated neurotoxic effects induced by TNPs exposure.


Assuntos
Melatonina , Nanopartículas , Ratos , Animais , Masculino , Melatonina/farmacologia , Melatonina/metabolismo , Quercetina/farmacologia , Quercetina/metabolismo , Ratos Wistar , Mitocôndrias/metabolismo , Nanopartículas/toxicidade , Estresse Oxidativo
13.
Vegetos ; 36(2): 701-720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35729946

RESUMO

Abstract: Coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has infected approximately 26 million people and caused more than 6 million deaths globally. Spike (S)-protein on the outer surface of the virus uses human trans-membrane serine protease-2 (TMPRSS2) to gain entry into the cell. Recent reports indicate that human dipeptidyl peptidase-4 inhibitors (DPP4 or CD26) could also be utilized to check the S-protein mediated viral entry into COVID-19 patients. RNA dependent RNA polymerase (RdRp) is another key virulence protein of SARS-CoV-2 life cycle. The study aimed to identify the potential anti-SARS-CoV-2 inhibitors present in Withania somnifera (Solanaceae) using computer aided drug discovery approach. Molecular docking results showed that flavone glycoside, sugar alcohol, and flavonoid present in W. somnifera showed - 11.69, - 11.61, - 10.1, - 7.71 kcal/mole binding potential against S-protein, CD26, RdRp, and TMPRSS2 proteins. The major standard inhibitors of the targeted proteins (Sitagliptin, VE607, Camostat mesylate, and Remdesivir) showed the - 7.181, - 6.6, - 5.146, and - 7.56 kcal/mole binding potential. Furthermore, the lead phytochemicals and standard inhibitors bound and non-bound RdRp and TMPRSS2 proteins were subjected to molecular dynamics (MD) simulation to study the complex stability and change in protein conformation. The result showed energetically favorable and stable complex formation in terms of RMSD, RMSF, SASA, Rg, and hydrogen bond formation. Drug likeness and physiochemical properties of the test compounds exhibited satisfactory results. Taken together, the present study suggests the presence of potential anti-SARS-CoV-2 phytochemicals in W. somnifera that requires further validation in in vitro and in vivo studies. Supplementary information: The online version contains supplementary material available at 10.1007/s42535-022-00404-4.

14.
Biomedicines ; 10(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36551820

RESUMO

A recent study has shown that DNA hypermethylation can promote ischemia reperfusion (I/R) injury by regulating the mitochondrial function. Diabetes mellitus (DM) is reported to induce DNA hypermethylation, but whether this prior DNA methylation in DM I/R heart inflicts a beneficial or detrimental effect is not known and is addressed in this study. DM was induced in 6-week-old male Wistar rats with streptozotocin (65 mg/kg b.wt). After 24 weeks on a normal diet, I/R was induced in rat heart using a Langendorff perfusion system and analyzed the myocardium for different parameters to measure hemodynamics, infarct size, DNA methylation and mitochondrial function. Diabetic heart exhibited DNA hypermethylation of 39% compared to the control, along with DNMT expression elevated by 41%. I/R induction in diabetic heart promoted further DNA hypermethylation (24%) with aggravated infarct size (21%) and reduced the cardiac rate pressure product (43%) from I/R heart. Importantly, diabetic I/R hearts also experienced a decline in the mitochondrial copy number (60%); downregulation in the expression of mitochondrial bioenergetics (ND1, ND2, ND3, ND4, ND5, ND6) and mitofusion (MFN1, MFN2) genes and the upregulation of mitophagy (PINK, PARKIN, OPTN) and mitofission (MFF, DNM1, FIS1) genes that reduce the dp/dt contribute to the contractile dysfunction in DM I/R hearts. Besides, a negative correlation was obtained between mitochondrial PGC1α, POLGA, TFAM genes and DNA hypermethylation in DM I/R hearts. Based on the above data, the elevated global DNA methylation level in diabetic I/R rat hearts deteriorated the mitochondrial function by downregulating the expression of POLGA, TFAM and PGC1α genes and negatively contributed to I/R-associated increased infarct size and altered hemodynamics.

15.
Biology (Basel) ; 11(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36552319

RESUMO

A previous study has reported that exposure to PM2.5 from diesel exhaust (diesel particulate matter (DPM)) for 21 days can deteriorate the cardiac recovery from myocardial ischemia reperfusion injury (IR), where the latter is facilitated by the efficiency of mitochondrial subpopulations. Many investigators have demonstrated that IR impact on cardiac mitochondrial subpopulations is distinct. In the present study, we decipher the role of PM2.5 on IR associated mitochondrial dysfunction at the subpopulation level by administrating PM2.5 directly to isolated female rat hearts via KH buffer. Our results demonstrated that PM2.5 administered heart (PM_C) severely deteriorated ETC enzyme activity (NQR, SQR, QCR, and COX) and ATP level in both IFM and SSM from the normal control. Comparatively, the declined activity was prominent in IFM fraction. Moreover, in the presence of IR (PM_IR), mitochondrial oxidative stress was higher in both subpopulations from the normal, where the IFM fraction of mitochondria experienced elevated oxidative stress than SSM. Furthermore, we assessed the in vitro protein translation capacity of IFM and SSM and found a declined ability in both subpopulations where the inability of IFM was significant in both PM_C and PM_IR groups. In support of these results, the expression of mitochondrial genes involved in fission, fusion, and mitophagy events along with the DNA maintenance genes such as GUF1, LRPPRC, and HSD17-b10 were significantly altered from the control. Based on the above results, we conclude that PM2.5 administration to the heart inflicted mitochondrial damage especially to the IFM fraction, that not only deteriorated the cardiac physiology but also reduced its ability to resist IR injury.

16.
J Environ Pathol Toxicol Oncol ; 41(4): 39-54, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36374961

RESUMO

Neurodegeneration has been recognized as a clinical episode characterized by neuronal death, including dementia, cognitive impairment and movement disorder. Most of the neurodegenerative deficits, via clinical symptoms, includes common pathogenic features as protein misfolding and aggregation. Therefore, the focus highlights the cellular organelle endoplasmic reticulum (ER) critically linked with the quality control and protein homeostasis. Unfolded protein response (UPR) or ER stress have also been considered as hallmarks for neurodegenerative disorders. It has been implicated that the levels of endocannabinoids (ECB) could rise at the platform of neurodegeneration. In addition, phytocannabinoids (PCB) including cannabidiol (CBD) could also initiate the IRE1, PERK, XBP-1, and ATF6, pathways that could lead to the degradation of the misfolded proteins and termination of protein translation. Thus, our aim was to determine if cannabinoids bind to these ER arm proteins involved in UPR by molecular docking and therefore determine its drug resemblance through ADME analysis. In our study, three cannabinoid receptors (CB1, CB2, and CB3) were considered to demonstrate their neuroprotective actions. The chosen ligands were screened as PCB (Δ9-tetrahydrocannabinol or THC), CBD, and two ECB, anandamide (AEA) and 2-arachidonoylglycerol (2-AG). The current findings have advocated that the cannabinoids and their molecular targets have shown considerable binding and their ADME properties also reveals that they possess moderate drug-like properties making it as a valuable option for the treatment and management of neurodegenerative diseases.


Assuntos
Canabidiol , Canabinoides , Doenças Neurodegenerativas , Humanos , Canabinoides/farmacologia , Simulação de Acoplamento Molecular , Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Doenças Neurodegenerativas/tratamento farmacológico
17.
Front Neurosci ; 16: 1005972, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36408377

RESUMO

Background: Alzheimer's disease (AD) is the most common form of dementia, which is among the top five causes of death in the United States. It is a neurodegenerative disorder that causes permanent loss of memory and cognition. The current pharmacotherapy for AD is based on providing symptomatic relief only and has many side effects. There is a need for a safer, disease-modifying drug for the treatment of AD. Experimental approach: The PASS online software was used to screen phytoconstituents based on their predicted effects on various AD-related targets. Vanillin was selected as the compound of interest, as it has not been researched elaborately on any animal model of AD. The acetylcholinesterase inhibitory activity of vanillin was established in vitro. Thereafter, ameliorative effect of vanillin was evaluated using the exteroceptive memory model in scopolamine-induced cognitive impairment mice model. Results: Vanillin showed an acetylcholinesterase inhibitory activity in vitro, and the IC50 value was calculated to be 0.033 mM. Vanillin significantly reversed the memory and behavioral deficits caused by scopolamine as demonstrated by significant improvement in memory in negative reinforcement, elevated plus maze, and spatial learning paradigms. Vanillin also proved to have a nootropic effect. Also, vanillin proved to have significantly better antioxidant and acetylcholinesterase inhibitory effects in vivo than donepezil hydrochloride. The potential anti-AD activity of vanillin was also confirmed by the reduction in IL-6 levels and TNF-α levels. Conclusion: Our results suggest that vanillin is a safe and effective natural drug candidate having a great potential for the treatment of AD. However, more research is required to evaluate its effect on A beta plaques and Tau neurofibrillary tangles in vivo.

18.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077039

RESUMO

Mammalian target of rapamycin (mTOR) regulates various fundamental cellular events including cell proliferation, protein synthesis, metabolism, apoptosis, and autophagy. Tumor suppressive miR-99b-5p has been implicated in regulating PI3K/AKT/mTOR signaling in a variety of types of cancer. Our previous study suggested the reciprocal miR-99b-5p/MTOR (downregulated/upregulated) pairing as a key microRNA-mRNA regulatory component involved in the prostate cancer (PCa) disparities. In this study, we further validated the expression profiles of mTOR and miR-99b-5p in the PCa, colon, breast, and lung cancer specimens and cell lines. The immunohistochemistry (IHC), immunofluorescence, Western blot, and RT-qPCR assays have confirmed that mTOR is upregulated while miR-99b-5p is downregulated in different patient cohorts and a panel of cancer cell lines. Intriguingly, elevated nuclear mTOR expression was observed in African American PCa and other advanced cancers. Transfection of the miR-99b-5p mimic resulted in a significant reduction in nuclear mTOR and androgen receptor (AR), while a slight/moderate to no decrease in cytoplasmic mTOR and AR in PCa and other cancer cells, suggesting that miR-99b-5p inhibits mTOR and AR expression and their nuclear translocation. Moreover, overexpression of miR-99b-5p targets/inhibits AR-mTOR axis, subsequently initiating cell apoptosis and sensitizing docetaxel-induced cytotoxicity in various cancers. In conclusion, our data suggest that reciprocal miR-99b-5p/nuclear mTOR pairing may be a more precise diagnostic/prognostic biomarker for aggressive PCa, than miR-99b-5p/MTOR pairing or mTOR alone. Targeting the AR-mTOR axis using miR-99b-5p has also been suggested as a novel therapeutic strategy to induce apoptosis and overcome chemoresistance in aggressive PCa.


Assuntos
MicroRNAs/metabolismo , Neoplasias da Próstata , Serina-Treonina Quinases TOR/metabolismo , Negro ou Afro-Americano , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Resistência a Medicamentos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Sirolimo , Regulação para Cima/genética
19.
Curr Pharmacol Rep ; 8(4): 227-235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646513

RESUMO

Purpose of Review: Neuropathic pain (NP) has been ubiquitously characterized by lesion and its linked somatosensory system either the central nervous system (CNS) or peripheral nervous system (PNS) This PNS episode is the most prevalent site of NP origin and is found to be associated with afferent nerve fibers carrying pain signals from injured/trauma site to the CNS including the brain. Several kinds of pharmacotherapeutic drugs shuch as analgesics, anti-convulsants, and anti-depressants are being employed for the its possible interventions. The NP has been a great interest to follow different pathophysiological mechanisms which are often considered to correlate with the metabolic pathways and its mediated disease. There is paucity of knowledge to make such mechanism via NP. Recent Finding: Most notably, recent pandemic outbreak of COVID-19 has also been reported in chronic pain mediated diabetes, inflammatory disorders, and cancers. There is an increasing incidence of NP and its complex mechanism has now led to identify the possible investigations of responsible genes and proteins via bioinformatics tools. The analysis might be more instrumental as collecting the genes from pain genetic database, analyzing the variants through differential gene expression (DEG) and constructing the protein-protein interaction (PPI) networks and thereby determining their upregulating and downregulating pathways. Summary: This review sheds a bright light towards several mechanisms at both cellular and molecular level, correlation of NP-mediated disease mechanism and possible cell surface biomarkers (receptors), and identified genes could be more promising for their pharmacological targets.

20.
Curr Res Transl Med ; 70(4): 103346, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35487168

RESUMO

It has been known as almost all the cells consists a lipid molecule which has a considerable impact in various biological processes. Lipids have been investigated with a potential role for the formation of cellular membrane and thereby maintaining the structural integrity. Omics has placed as a combined technologies utilized for an exploaration of mechanistic actions in several kinds of molecules that make up the cells of an organism. Lipidomics has been recognized as a newly emerged branch of omics technology. This technology has the captivating factors to classify and characterize almost all the cellular lipids with the help of various analytical techniques and computational biological plateform. In lipidomics studies, structural display of several lipid biomarkers could also be analyzed and considered for actual disease diagnosis procedures. This could also replace certain traditional diagnostics method at all over the globe. Our review focuses how important this lipidomics particularly in disease diagnosis and also covers various analytical techniques and computational methods or bioinformatics tools in for the diagnosis of disease. In addtion, we also pinponted the possible role of lipids in several kinds of cellular disorders including cancer, neurodegenerative diseases, cardiovascular diseases, diabetes and obesity in human population. .


Assuntos
Metabolismo dos Lipídeos , Lipidômica , Humanos , Lipídeos/química , Espectrometria de Massas/métodos , Doença Crônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA