Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Mol Nutr Food Res ; 68(5): e2300355, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327171

RESUMO

SCOPE: Disturbances in one-carbon metabolism contribute to nonalcoholic fatty liver disease (NAFLD) which encompasses steatosis, steatohepatitis, fibrosis, and cirrhosis. The goal is to examine impact of folate deficiency and the Mthfr677C >T variant on NAFLD. METHODS AND RESULTS: This study uses the new Mthfr677C >T mouse model for the human MTHFR677C >T variant. Mthfr677CC and Mthfr677TT mice were fed control diet (CD) or folate-deficient (FD) diets for 4 months. FD and Mthfr677TT alter choline/methyl metabolites in liver and/or plasma (decreased S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) ratio, methyltetrahydrofolate, and betaine; increased homocysteine [Hcy]). FD, with contribution from Mthfr677TT, provokes fibrosis in males. Studies of normal livers reveal alterations in plasma markers and gene expression that suggest an underlying predisposition to fibrosis induced by FD and/or Mthfr677TT in males. These changes are absent or reverse in females, consistent with the sex disparity of fibrosis. Sex-based differences in methylation potential, betaine, sphingomyelin, and trimethylamine-N-oxide (TMAO) levels may prevent fibrogenesis in females. In contrast, Mthfr677TT alters choline metabolism, dysregulates expression of lipid metabolism genes, and promotes steatosis in females. CONCLUSION: This study suggests that folate deficiency predisposes males to fibrosis, which is exacerbated by Mthfr677TT, whereas Mthfr677TT predisposes females to steatosis, and reveal novel contributory mechanisms for these NAFLD-related disorders.


Assuntos
Deficiência de Ácido Fólico , Hepatopatia Gordurosa não Alcoólica , Masculino , Humanos , Feminino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Betaína , Deficiência de Ácido Fólico/metabolismo , Ácido Fólico , Metilenotetra-Hidrofolato Redutase (NADPH2) , Genótipo , Cirrose Hepática/etiologia , S-Adenosilmetionina , Colina/metabolismo , Homocisteína
2.
Nutr Neurosci ; 27(4): 300-309, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36932327

RESUMO

Nutrition is a modifiable risk factor for ischemic stroke. As people age their ability to absorb some nutrients decreases, a primary example is vitamin B12. Older individuals with a vitamin B12 deficiency are at a higher risk for ischemic stroke and have worse stroke outcome. However, the mechanisms through which these occur remain unknown. The aim of the study was to investigate the role of vitamin B12 deficiency in ischemic stroke outcome and mechanistic changes in a mouse model. Ten-month-old male and female mice were put on control or vitamin B12 deficient diets for 4 weeks prior to and after ischemic stroke to the sensorimotor cortex. Motor function was measured, and tissues were collected to assess potential mechanisms. All deficient mice had increased levels of total homocysteine in plasma and liver tissues. After ischemic stroke, deficient mice had impaired motor function compared to control mice. There was no difference between groups in ischemic damage volume. However, within the ischemic damage region, there was an increase in total apoptosis of male deficient mice compared to controls. Furthermore, there was an increase in neuronal survival in ischemic brain tissue of the vitamin B12 deficient mice compared to controls. Additionally, there were changes in choline metabolites in ischemic brain tissue because of a vitamin B12 deficiency. The data presented in this study confirms that a vitamin B12 deficiency worsens stroke outcome in male and female mice. The mechanisms driving this change may be a result of neuronal survival and compensation in choline metabolism within the damaged brain tissue.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Deficiência de Vitamina B 12 , Humanos , Pessoa de Meia-Idade , Masculino , Animais , Feminino , Camundongos , Lactente , Ácido Fólico , Dieta , Deficiência de Vitamina B 12/complicações , Deficiência de Vitamina B 12/metabolismo , Acidente Vascular Cerebral/complicações , Vitamina B 12 , Colina , Homocisteína
3.
Neural Regen Res ; 18(11): 2443-2448, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37282475

RESUMO

Maternal one-carbon metabolism plays an important role in early life programming. There is a well-established connection between the fetal environment and the health status of the offspring. However, there is a knowledge gap on how maternal nutrition impacts stroke outcomes in offspring. The aim of our study was to investigate the role of maternal dietary deficiencies in folic acid or choline on stroke outcomes in 3-month-old offspring. Adult female mice were fed a folic acid-deficient diet, choline-deficient diet, or control diet 4 weeks before pregnancy. They were continued on diets during pregnancy and lactation. Male and female offspring were weaned onto a control diet and at 2 months of age were subjected to ischemic stroke within the sensorimotor cortex via photothrombotic damage. Mothers maintained on either a folic acid-deficient diet or choline-deficient diet had reduced levels of S-adenosylmethionine in the liver and S-adenosylhomocysteine in the plasma. After ischemic stroke, motor function was impaired in 3-month-old offspring from mothers receiving either a folic acid-deficient diet or choline-deficient diet compared to the animals receiving a control diet. In brain tissue, there was no difference in ischemic damage volume. When protein levels were assessed in ischemic brain tissue, there were lower levels of active caspase-3 and hypoxia-inducible factor 1α in males compared to females and betaine levels were reduced in offspring from the mothers receiving a choline-deficient diet. Our results demonstrate that a deficient maternal diet at critical time points in neurodevelopment results in worse stroke outcomes. This study emphasizes the importance of maternal diet and the impact it can have on offspring health.

4.
Nutrients ; 15(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36678154

RESUMO

Breastfeeding is the gold standard for early nutrition. Metabolites from the one-carbon metabolism pool are crucial for infant development. The aim of this study is to compare the breast-milk one-carbon metabolic profile to other biofluids where these metabolites are present, including cord and adult blood plasma as well as cerebrospinal fluid. Breast milk (n = 142), cord blood plasma (n = 23), maternal plasma (n = 28), aging adult plasma (n = 91), cerebrospinal fluid (n = 92), and infant milk formula (n = 11) samples were analyzed by LC-MS/MS to quantify choline, betaine, methionine, S-adenosylmethionine, S-adenosylhomocysteine, total homocysteine, and cystathionine. Differences between groups were visualized by principal component analysis and analyzed by Kruskal-Wallis test. Correlation analysis was performed between one-carbon metabolites in human breast milk. Principal component analysis based on these metabolites separated breast milk samples from other biofluids. The S-adenosylmethionine (SAM) concentration was significantly higher in breast milk compared to the other biofluids and was absent in infant milk formulas. Despite many significant correlations between metabolites in one-carbon metabolism, there were no significant correlations between SAM and methionine or total homocysteine. Together, our data indicate a high concentration of SAM in breast milk, which may suggest a strong demand for this metabolite during infant early growth while its absence in infant milk formulas may indicate the inadequacy of this vital metabolic nutrient.


Assuntos
Leite Humano , S-Adenosilmetionina , Adulto , Criança , Lactente , Feminino , Humanos , S-Adenosilmetionina/metabolismo , Cromatografia Líquida , Leite Humano/metabolismo , Carbono , Espectrometria de Massas em Tandem , Metionina/metabolismo , Racemetionina , S-Adenosil-Homocisteína/metabolismo , Homocisteína
5.
Hum Mol Genet ; 32(9): 1575-1588, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36637428

RESUMO

Folic acid (synthetic folate, FA) is consumed in excess in North America and may interact with common pathogenic variants in methylenetetrahydrofolate reductase (MTHFR); the most prevalent inborn error of folate metabolism with wide-ranging obesity-related comorbidities. While preclinical murine models have been valuable to inform on diet-gene interactions, a recent Folate Expert panel has encouraged validation of new animal models. In this study, we characterized a novel zebrafish model of mthfr deficiency and evaluated the effects of genetic loss of mthfr function and FA supplementation during embryonic development on energy homeostasis and metabolism. mthfr-deficient zebrafish were generated using CRISPR mutagenesis and supplemented with no FA (control, 0FA) or 100 µm FA (100FA) throughout embryonic development (0-5 days postfertilization). We show that the genetic loss of mthfr function in zebrafish recapitulates key biochemical hallmarks reported in MTHFR deficiency in humans and leads to greater lipid accumulation and aberrant cholesterol metabolism as reported in the Mthfr murine model. In mthfr-deficient zebrafish, energy homeostasis was also impaired as indicated by altered food intake, reduced metabolic rate and lower expression of central energy-regulatory genes. Microglia abundance, involved in healthy neuronal development, was also reduced. FA supplementation to control zebrafish mimicked many of the adverse effects of mthfr deficiency, some of which were also exacerbated in mthfr-deficient zebrafish. Together, these findings support the translatability of the mthfr-deficient zebrafish as a preclinical model in folate research.


Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2) , Peixe-Zebra , Humanos , Gravidez , Feminino , Camundongos , Animais , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Ácido Fólico , Suplementos Nutricionais , Homeostase , Desenvolvimento Embrionário/genética
6.
Alzheimers Dement (N Y) ; 8(1): e12368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36514441

RESUMO

Introduction: Vascular contributions to cognitive impairment and dementia (VCID) are a leading cause of dementia. An underappreciated, modifiable risk factor for VCID is hyperhomocysteinemia (HHcy), defined by elevated levels of plasma homocysteine, most often due to impaired B vitamin absorption in aged persons. Studies aimed at identifying neuropathologic features and gene expression profiles associated with HHcy have been lacking. Methods: A subset of research volunteers from the University of Kentucky Alzheimer's Disease Research Center longitudinal cohort came to autopsy and had ante mortem plasma homocysteine levels available. Brain tissue and blood plasma drawn closest to death were used to measure homocysteine and related metabolites in the current pilot study. Genetic expression profiles of inflammatory markers were evaluated using the Human Neuroinflammation NanoString panel. Further analyses included an evaluation of plasma homocysteine effects on amyloid beta, tau, ionized calcium-binding adaptor molecule 1, and glial fibrillary acidic protein immunohistochemistry in the frontal and occipital cortices. Analytes and other study outcomes were evaluated in relation to ante mortem HHcy status: We identified 13 persons with normal ante mortem plasma homocysteine levels (<14 µmol/L) and 18 who had high plasma homocysteine levels (≥14 µmol/L). Results: Participants with HHcy demonstrated increased levels of several plasma homocysteine cycle metabolites such as total cysteine, S-adenosyl-homocysteine, cystathionine, and choline. Inflammatory gene expression profiles showed a general downregulation in the setting of elevated plasma homocysteine. HHcy was associated with more and longer microglial processes, but smaller and fewer astrocytes, especially in participants of older age at death. HHcy in older participants was also associated with occipital cortex microhemorrhages and increased severity of atherosclerosis throughout the cerebral vasculature. Conclusions: Increased plasma homocysteine and older age were associated with the downregulation of inflammatory gene expression markers in association with significant glial and vascular pathology changes. Impaired immune function is a plausible mechanism by which HHcy increases cerebrovascular damage leading to impaired cognitive function.

7.
Methods Mol Biol ; 2546: 35-43, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36127576

RESUMO

We describe a simple stable isotope dilution method for accurate determination of S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) in plasma as a clinical diagnostic test. Determination of SAM/SAH in plasma (20 µL) was performed by high-performance liquid chromatography coupled with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Calibrators (SAM and SAH) and internal standards (2H3-SAM and 2H4-SAH) were included in each analytical run for calibration. Sample preparation involved combining 20 µL sample with 180 µL of internal standard solution consisting of heavy-isotope-labeled internal standards in mobile phase A and filtering by ultracentrifugation through a 10 kd MW cutoff membrane. Sample filtrate (3 µL) was injected by a Shimadzu Nexera LC System interfaced with a 5500 QTRAP® (Sciex). Chromatographic separation was achieved on a 250 mm × 2.0 mm EZ-faast column from Phenomenex. Samples were eluted at a flow rate of 0.20 mL/min with a binary gradient with a total run time of 10 min. The source operated in positive ion mode at an ion spray voltage of +5000 V. SAM and SAH resolved by a gradient to 100% methanol with retention times of 5.8 and 5.5 min, respectively. HPLC chromatographic conditions did not produce complete separation of SAM and SAH, but they were completely discerned by their different fragmentation pattern in the mass spectrometer working in the MS-MS mode. The observed m/z values of the fragment ions were m/z 399→250 for SAM, m/z 385→136 for SAH, m/z 402→250 for 2H3-SAM, and m/z 203→46. The calibration curve was linear over the range of 12.5-5000 nmol/L for SAM and SAH.


Assuntos
S-Adenosilmetionina , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Metanol , S-Adenosil-Homocisteína , Espectrometria de Massas em Tandem/métodos
8.
Methods Mol Biol ; 2546: 165-174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36127587

RESUMO

We describe a simple stable isotope dilution method for accurate and precise measurement of γ-aminobutyric acid (GABA), a major inhibitory neurotransmitter in human cerebrospinal fluid (CSF) as a clinical diagnostic test. Determination of CSF GABA has clinical utility in diagnosing inborn errors of GABA metabolism, specifically for deficiencies of GABA-transaminase and succinic semialdehyde dehydrogenase. Quantitation of CSF GABA is performed utilizing high-performance liquid chromatography coupled with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Analysis of free and total GABA requires two individual sample preparations and mass spectrometry analyses. Free GABA in CSF is determined by a 1:2 dilution with internal standard (GABA-D2) and injected directly onto the HPLC-ESI-MS/MS system. Quantitation of total GABA in CSF requires additional sample preparation in order to hydrolyze all the conjugated GABA in the sample to free GABA. Complete hydrolysis is performed incubating sample at >100 °C in acidic conditions (hydrochloric acid) for 4 h. The sample is then further diluted 1:10 with a 90% acetonitrile/0.1% formic acid solution and injected into the HPLC-ESI-MS/MS system. Each assay is quantified using a five-point standard curve and is linear from 6 to 1000 nM and 0.63 to 80 µM for free and total GABA, respectively.


Assuntos
Succinato-Semialdeído Desidrogenase , Espectrometria de Massas em Tandem , Acetonitrilas , Cromatografia Líquida , Humanos , Ácido Clorídrico , Isótopos , Espectrometria de Massas em Tandem/métodos , Transaminases , Ácido gama-Aminobutírico
9.
Methods Mol Biol ; 2546: 253-260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36127595

RESUMO

We describe a simple stable isotope dilution method for accurate and precise measurement of cerebrospinal fluid (CSF) lactate as a clinical diagnostic test. Lactate is produced from cellular metabolism, primarily in muscle cells, and provides a source of energy especially during instances of low oxygen levels. Measurement of lactate in CSF provides diagnostic information regarding the body's oxidative metabolism including diagnosis of lactate acidosis, aiding in the diagnosis of blood-brain barrier glucose transporter defect and differentiation between bacterial and viral meningitis. Determination of lactate in CSF (20 µL) was performed utilizing high-performance liquid chromatography coupled with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Lactate in CSF is determined by a 1:10 dilution with internal standard (sodium lacate-d3) and injected directly onto the HPLC-ESI-MS/MS system. Each assay is quantified using a six-point standard curve (0.625-20 mM) and has an analytical measurement range of 0.3-20 mM.


Assuntos
Ácido Láctico , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Isótopos , Sódio , Espectrometria de Massas em Tandem/métodos
10.
Methods Mol Biol ; 2546: 311-319, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36127600

RESUMO

We describe a simple stable isotope dilution method for accurate and precise measurement of cerebrospinal fluid (CSF) 5-methyltetrahydrofolate (5-MTHF) as a clinical diagnostic test. 5-MTHF is the main biologically active form of folate and is involved in the regulation of homocysteine and numerous methylation reactions, including synthesis of neurotransmitters, lipids, DNA, and RNA. Measurement of 5-MTHF in CSF provides diagnostic information regarding disorders affecting folate metabolism within the central nervous system, in particular inborn errors of folate metabolism and cerebral folate deficiency. Determination of 5-MTHF in CSF (50 µL) was performed utilizing high-performance liquid chromatography coupled with electrospray positive ionization tandem mass spectrometry (HPLC-ESI-MS/MS). 5-MTHF in CSF is determined by a 1:2 dilution with internal standard (5-MTHF-13C5) and injected directly onto the HPLC-ESI-MS/MS system. Each assay is quantified using a five-point standard curve (25-400 nM) and has an analytical measurement range of 3-1000 nM.


Assuntos
Ácido Fólico , Espectrometria de Massas em Tandem , Cromatografia Líquida , DNA , Homocisteína , Isótopos , Lipídeos , RNA , Espectrometria de Massas em Tandem/métodos , Tetra-Hidrofolatos
11.
J Cereb Blood Flow Metab ; 42(5): 771-787, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35023380

RESUMO

Vascular contributions to cognitive impairment and dementia (VCID) are the second leading cause of dementia behind Alzheimer's disease. Apolipoprotein E (ApoE) is a lipid transporting lipoprotein found within the brain and periphery. The APOE ε4 allele is the strongest genetic risk factor for late onset Alzheimer's disease and is a risk factor for VCID. Our lab has previously utilized a dietary model of hyperhomocysteinemia (HHcy) to induce VCID pathology and cognitive deficits in mice. This diet induces perivascular inflammation through cumulative oxidative damage leading to glial mediated inflammation and blood brain barrier breakdown. Here, we examine the impact of ApoE ε4 compared to ε3 alleles on the progression of VCID pathology and inflammation in our dietary model of HHcy. We report a significant resistance to HHcy induction in ε4 mice, accompanied by a number of related differences related to homocysteine (Hcy) metabolism and methylation cycle, or 1-C, metabolites. There were also significant differences in inflammatory profiles between ε3 and ε4 mice, as well as significant reduction in Serpina3n, a serine protease inhibitor associated with ApoE ε4, expression in ε4 HHcy mice relative to ε4 controls. Finally, we find evidence of pervasive sex differences within both genotypes in response to HHcy induction.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Demência Vascular , Hiper-Homocisteinemia , Alelos , Doença de Alzheimer/genética , Animais , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Demência Vascular/genética , Dieta , Feminino , Técnicas de Introdução de Genes , Genótipo , Humanos , Hiper-Homocisteinemia/genética , Inflamação/genética , Masculino , Camundongos
12.
J Cardiothorac Vasc Anesth ; 36(8 Pt A): 2303-2312, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34774406

RESUMO

OBJECTIVES: Acute kidney injury (AKI) remains a leading source of morbidity and mortality after cardiothoracic surgery. Insulin-like growth factor-binding protein 7 (IGFBP7), and tissue inhibitor of metalloproteinases-2 (TIMP-2), are novel early-phase renal biomarkers that have been validated as sensitive predictors of AKI. Here the authors studied the efficacy of these biomarkers for predicting AKI after left ventricular assist device (LVAD) implantation and cardiac transplantation. DESIGN/SETTING/PARTICIPANTS/INTERVENTIONS: This was a prospective study of 73 patients undergoing LVAD implantation (n = 37) or heart transplant (n = 36) from 2016 to 2017 at the authors' center. TIMP-2 and IGFBP7 were measured with the NephroCheck Test on urine samples before surgery and one-to-six hours after surgery. NephroCheck scores were assessed as predictors of moderate/severe AKI (Kidney Disease International Global Outcomes 2/3 creatinine criteria) within 48 hours of surgery, and the association with survival to one year was investigated. MEASUREMENTS AND MAIN RESULTS: The LVAD and transplant cohorts overall were similar in demographics and baseline creatinine (p > 0.05), with the exception of having more African-American patients in the LVAD arm (p = 0.003). Eleven (30%) LVAD and 16 (44%) transplant patients developed moderate/severe AKI. Overall, AKI was associated with postsurgery NephroCheck (odds ratio [95% confidence interval] for 0.1 mg/dL increase: 1.36 [1.04-1.79]; p = 0.03), but not with baseline NephroCheck (p = 0.92). When analyzed by cohort, this effect remained for LVAD (1.68 [1.05-2.71]; p = 0.03) but not for transplant (p = 0.15). Receiver operating characteristic analysis showed postoperative NephroCheck to be superior to baseline creatinine in LVAD (p = 0.046). Furthermore, an increase of 0.1 mg/dL in postoperative NephroCheck was associated with a 10% increase in the risk of mortality (adjusted hazard ratio: 1.11 [1.01-1.21]; p = 0.04) independent of age and body mass index. CONCLUSION: Assessment of TIMP-2 and IGFBP7 within six hours after surgery appeared effective at predicting AKI in patients with LVADs. Larger studies are warranted to validate these findings.


Assuntos
Injúria Renal Aguda , Transplante de Coração , Coração Auxiliar , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/etiologia , Biomarcadores/urina , Pontos de Checagem do Ciclo Celular , Creatinina , Transplante de Coração/efeitos adversos , Coração Auxiliar/efeitos adversos , Humanos , Estudos Prospectivos , Inibidor Tecidual de Metaloproteinase-2/urina
13.
FASEB J ; 35(6): e21629, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33949005

RESUMO

Cystathionine beta-synthase (CBS) is a key enzyme of the trans-sulfuration pathway that converts homocysteine to cystathionine. Loss of CBS activity due to mutation results in CBS deficiency, an inborn error of metabolism characterized by extreme elevation of plasma total homocysteine (tHcy). C57BL6 mice containing either a homozygous null mutation in the cystathionine ß-synthase (Cbs-/- ) gene or an inactive human CBS protein (Tg-G307S Cbs-/- ) are born in mendelian numbers, but the vast majority die between 18 and 21 days of age due to liver failure. However, adult Cbs null mice that express a hypomorphic allele of human CBS as a transgene (Tg-I278T Cbs-/- ) show almost no neonatal lethality despite having serum tHcy levels similar to mice with no CBS activity. Here, we characterize liver and serum metabolites in neonatal Cbs+/- , Tg-G307S Cbs-/- , and Tg-I278T Cbs-/- mice at 6, 10, and 17 days of age to understand this difference. In serum, we observe similar elevations in tHcy in both Tg-G307S Cbs-/- and Tg-I278T Cbs-/- compared to control animals, but methionine is much more severely elevated in Tg-G307S Cbs-/- mice. Large scale metabolomic analysis of liver tissue confirms that both methionine and methionine-sulfoxide are significantly more elevated in Tg-G307S Cbs-/- animals, along with significant differences in several other metabolites including hexoses, amino acids, other amines, lipids, and carboxylic acids. Our data are consistent with a model that the neonatal lethality observed in CBS-null mice is driven by excess methionine resulting in increased stress on a variety of related pathways including the urea cycle, TCA cycle, gluconeogenesis, and phosphatidylcholine biosynthesis.


Assuntos
Cistationina beta-Sintase/fisiologia , Modelos Animais de Doenças , Falência Hepática/patologia , Metaboloma , Mutação , Animais , Animais Recém-Nascidos , Feminino , Falência Hepática/etiologia , Falência Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo
14.
Mol Nutr Food Res ; 65(14): e2100197, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34010503

RESUMO

SCOPE: Many pregnant women have higher folic acid (FA) intake due to food fortification and increased vitamin use. It is reported that diets containing five-fold higher FA than recommended for mice (5xFASD) during pregnancy resulted in methylenetetrahydrofolate reductase (MTHFR) deficiency and altered choline/methyl metabolism, with neurobehavioral abnormalities in newborns. The goal is to determine whether these changes have their origins in the placenta during embryonic development. METHODS AND RESULTS: Female mice are fed control diet or 5xFASD for a month before mating and maintained on these diets until embryonic day 17.5. 5xFASD led to pseudo-MTHFR deficiency in maternal liver and altered choline/methyl metabolites in maternal plasma (increased methyltetrahydrofolate and decreased betaine). Methylation potential (S-adenosylmethionine:S-adenosylhomocysteine ratio) and glycerophosphocholine are decreased in placenta and embryonic liver. Folic acid supplemented diet results in sex-specific transcriptome profiles in placenta, with validation of dietary expression changes of 29 genes involved in angiogenesis, receptor biology or neurodevelopment, and altered methylation of the serotonin receptor 2A gene. CONCLUSION: Moderate increases in folate intake during pregnancy result in placental metabolic and gene expression changes, particularly in angiogenesis, which may contribute to abnormal behavior in pups. These results are relevant for determining a safe upper limit for folate intake during pregnancy.


Assuntos
Ácido Fólico/farmacologia , Homocistinúria/induzido quimicamente , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Espasticidade Muscular/induzido quimicamente , Placenta/metabolismo , Fatores Sexuais , Animais , Metilação de DNA , Suplementos Nutricionais , Feminino , Ácido Fólico/efeitos adversos , Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Ftálicos/sangue , Gravidez , Transtornos Psicóticos , S-Adenosilmetionina/sangue , Transcriptoma/efeitos dos fármacos
15.
Nutrients ; 13(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925570

RESUMO

Supplementation with [6S]-5-methyltetrahydrofolic acid (MTHF) is recommended as an alternative to folic acid (FA) in prenatal supplements. This study compared equimolar gestational FA and MTHF diets on energy regulation of female offspring. Wistar rats were fed an AIN-93G diet with recommended (2 mg/kg diet) or 5-fold (5X) intakes of MTHF or FA. At weaning, female offspring were fed a 45% fat diet until 19 weeks. The 5X-MTHF offspring had higher body weight (>15%), food intake (8%), light-cycle energy expenditure, and lower activity compared to 5X-FA offspring (p < 0.05). Both the 5X offspring had higher plasma levels of the anorectic hormone leptin at birth (60%) and at 19 weeks (40%), and lower liver weight and total liver lipids compared to the 1X offspring (p < 0.05). Hypothalamic mRNA expression of leptin receptor (ObRb) was lower, and of suppressor of cytokine signaling-3 (Socs3) was higher in the 5X-MTHF offspring (p < 0.05), suggesting central leptin dysregulation. In contrast, the 5X-FA offspring had higher expression of genes encoding for dopamine and GABA- neurotransmitter receptors (p < 0.01), consistent with their phenotype and reduced food intake. When fed folate diets at the requirement level, no differences were found due to form in the offspring. We conclude that MTHF compared to FA consumed at high levels in the gestational diets program central and peripheral mechanisms to favour increased weight gain in the offspring. These pre-clinical findings caution against high gestational intakes of folates of either form and encourage clinical trials examining their long-term health effects when consumed during pregnancy.


Assuntos
Peso Corporal/efeitos dos fármacos , Dieta/métodos , Ingestão de Energia/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Ácido Fólico/farmacologia , Tetra-Hidrofolatos/farmacologia , Animais , Animais Recém-Nascidos , Metabolismo Energético/efeitos dos fármacos , Feminino , Ácido Fólico/administração & dosagem , Camundongos , Modelos Animais , Gravidez , Ratos Wistar , Tetra-Hidrofolatos/administração & dosagem , Complexo Vitamínico B/administração & dosagem , Complexo Vitamínico B/farmacologia
16.
J Nutr ; 151(4): 857-865, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33561219

RESUMO

BACKGROUND: North American women consume high folic acid (FA), but most are not meeting the adequate intakes for choline. High-FA gestational diets induce an obesogenic phenotype in rat offspring. It is unclear if imbalances between FA and other methyl-nutrients (i.e., choline) account for these effects. OBJECTIVE: This study investigated the interaction of choline and FA in gestational diets on food intake, body weight, one-carbon metabolism, and hypothalamic gene expression in male Wistar rat offspring. METHODS: Pregnant Wistar rats were fed an AIN-93G diet with recommended choline and FA [RCRF; 1-fold, control] or high (5-fold) FA with choline at 0.5-fold [low choline and high folic acid (LCHF)], 1-fold [recommended choline and high folic acid (RCHF)], or 2.5-fold [high choline and high folic acid (HCHF)]. Male offspring were weaned to an RCRF diet for 20 wk. Food intake, weight gain, plasma energy-regulatory hormones, brain and plasma one-carbon metabolites, and RNA sequencing (RNA-seq) in pup hypothalamuses were assessed. RESULTS: Adult offspring from LCHF and RCHF, but not HCHF, gestational diets had 10% higher food intake and weight gain than controls (P < 0.01). HCHF newborn pups had lower plasma insulin and leptin compared with LCHF and RCHF pups (P < 0.05), respectively. Pup brain choline (P < 0.05) and betaine (P < 0.01) were 22-33% higher in HCHF pups compared with LCHF pups; methionine was ∼23% lower after all high FA diets compared with RCRF (P < 0.01). LCHF adult offspring had lower brain choline (P < 0.05) than all groups and lower plasma 5-methyltetrahydrofolate (P < 0.05) than RCRF and RCHF groups. HCHF adult offspring had lower plasma cystathionine (P < 0.05) than LCHF adult offspring and lower homocysteine (P < 0.01) than RCHF and RCRF adult offspring. RNA-seq identified 144 differentially expressed genes in the hypothalamus of HCHF newborns compared with controls. CONCLUSIONS: Increased choline in gestational diets modified the programming effects of high FA on long-term food intake regulation, plasma energy-regulatory hormones, one-carbon metabolism, and hypothalamic gene expression in male Wistar rat offspring, emphasizing a need for more attention to the choline and FA balance in maternal diets.


Assuntos
Regulação do Apetite/fisiologia , Colina/administração & dosagem , Ácido Fólico/administração & dosagem , Fenômenos Fisiológicos da Nutrição Materna , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Recém-Nascidos , Peso Corporal/fisiologia , Encéfalo/metabolismo , Colina/sangue , Ingestão de Alimentos/fisiologia , Feminino , Ácido Fólico/sangue , Expressão Gênica , Hipotálamo/metabolismo , Insulina/sangue , Gordura Intra-Abdominal/anatomia & histologia , Leptina/sangue , Masculino , Troca Materno-Fetal/fisiologia , Modelos Animais , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Desmame
17.
Nutrients ; 13(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375730

RESUMO

[6S]-5-methyltetrahydrofolic acid (MTHF) is a proposed replacement for folic acid (FA) in diets and prenatal supplements. This study compared the effects of these two forms on maternal metabolism and hypothalamic gene expression. Pregnant Wistar rats received an AIN-93G diet with recommended FA (1X, 2 mg/kg, control), 5X-FA or equimolar levels of MTHF. During lactation they received the control diet and then a high fat diet for 19-weeks post-weaning. Body weight, adiposity, food intake, energy expenditure, plasma hormones, folate, and 1-carbon metabolites were measured. RNA-sequencing of the hypothalamus was conducted at parturition. Weight-loss from weaning to 1-week post-weaning was less in dams fed either form of the 5X vs. 1X folate diets, but final weight-gain was higher in 5X-MTHF vs. 5X-FA dams. Both doses of the MTHF diets led to 8% higher food intake and associated with lower plasma leptin at parturition, but higher leptin at 19-weeks and insulin resistance at 1-week post-weaning. RNA-sequencing revealed 279 differentially expressed genes in the hypothalamus in 5X-MTHF vs. 5X-FA dams. These findings indicate that MTHF and FA differ in their programing effects on maternal phenotype, and a potential adverse role of either form when given at the higher doses.


Assuntos
Dieta , Ácido Fólico/administração & dosagem , Expressão Gênica/efeitos dos fármacos , Hipotálamo/metabolismo , Fenótipo , Tetra-Hidrofolatos/administração & dosagem , Animais , Dieta Hiperlipídica , Suplementos Nutricionais , Relação Dose-Resposta a Droga , Ingestão de Alimentos , Metabolismo Energético/efeitos dos fármacos , Feminino , Resistência à Insulina , Lactação/fisiologia , Leptina/sangue , Parto , Gravidez , Ratos , Ratos Wistar , Desmame , Aumento de Peso/efeitos dos fármacos
18.
Epigenetics ; 15(8): 871-886, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32096676

RESUMO

Methionine metabolism is dysregulated in multiple sclerosis (MS). The methyl donor betaine is depleted in the MS brain where it is linked to changes in levels of histone H3 trimethylated on lysine 4 (H3K4me3) and mitochondrial impairment. We investigated the effects of replacing this depleted betaine in the cuprizone mouse model of MS. Supplementation with betaine restored epigenetic control and alleviated neurological disability in cuprizone mice. Betaine increased the methylation potential (SAM/SAH ratio), levels of H3K4me3, enhanced neuronal respiration, and prevented axonal damage. We show that the methyl donor betaine and the betaine homocysteine methyltransferase (BHMT) enzyme can act in the nucleus to repair epigenetic control and activate neuroprotective transcriptional programmes. ChIP-seq data suggest that BHMT acts on chromatin to increase the SAM/SAH ratio and histone methyltransferase activity locally to increase H3K4me3 and activate gene expression that supports neuronal energetics. These data suggest that the methyl donor betaine may provide neuroprotection in MS where mitochondrial impairment damages axons and causes disability.


Assuntos
Betaína/farmacologia , Montagem e Desmontagem da Cromatina , Epigênese Genética , Mitocôndrias/metabolismo , Esclerose Múltipla/genética , Animais , Betaína-Homocisteína S-Metiltransferase/metabolismo , Respiração Celular , Células Cultivadas , Cuprizona/toxicidade , Código das Histonas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Esclerose Múltipla/etiologia , Esclerose Múltipla/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Metabolites ; 10(2)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075035

RESUMO

Alzheimer's disease (AD) is characterized, amongst other features, by the pathologic accumulation of abnormally phosphorylated tau filaments in neurons that lead to neurofibrillary tangles. However, the molecular mechanisms by which the abnormal processing of tau leads to neurodegeneration and cognitive impairment remain unknown. Metabolomic techniques can comprehensively assess disturbances in metabolic pathways that reflect changes downstream from genomic, transcriptomic and proteomic systems. In the present study, we undertook a targeted metabolomic approach to determine a total of 187 prenominated metabolites in brain cortex tissue from wild type and rTg4510 animals (a mice model of tauopathy), in order to establish the association of metabolic pathways with cognitive impairment. This targeted metabolomic approach revealed significant differences in metabolite concentrations of transgenic mice. Brain glutamine, serotonin and sphingomyelin C18:0 were found to be predictors of memory impairment. These findings provide informative data for future research on AD, since some of them agree with pathological alterations observed in diseased humans.

20.
FASEB J ; 33(8): 9334-9349, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31120771

RESUMO

Methyl-donor deficiency is a risk factor for neurodegenerative diseases. Dietary deficiency of the methyl-donors methionine and choline [methionine-choline-deficient (MCD) diet] is a well-established model of nonalcoholic steatohepatitis (NASH), yet brain metabolism has not been studied in this model. We hypothesized that supplemental betaine would protect both the liver and brain in this model and that any benefit to the brain would be due to improved liver metabolism because betaine is a methyl-donor in liver methylation but is not metabolically active in the brain. We fed male Sprague-Dawley rats a control diet, MCD diet, or betaine-supplemented MCD (MCD+B) diet for 8 wk and collected blood and tissue. As expected, betaine prevented MCD diet-induced NASH. However, contrary to our prediction, it did not appear to do so by stimulating methylation; the MCD+B diet worsened hyperhomocysteinemia and depressed liver methylation potential 8-fold compared with the MCD diet. Instead, it significantly increased the expression of genes involved in ß-oxidation: fibroblast growth factor 21 and peroxisome proliferator-activated receptor α. In contrast to that of the liver, brain methylation potential was unaffected by diet. Nevertheless, several phospholipid (PL) subclasses involved in stabilizing brain membranes were decreased by the MCD diet, and these improved modestly with betaine. The protective effect of betaine is likely due to the stimulation of ß-oxidation in liver and the effects on PL metabolism in brain.-Abu Ahmad, N., Raizman, M., Weizmann, N., Wasek, B., Arning, E., Bottiglieri, T., Tirosh, O., Troen, A. M. Betaine attenuates pathology by stimulating lipid oxidation in liver and regulating phospholipid metabolism in brain of methionine-choline-deficient rats.


Assuntos
Betaína/uso terapêutico , Deficiência de Colina/tratamento farmacológico , Deficiência de Colina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metionina/deficiência , Metionina/metabolismo , Fosfolipídeos/metabolismo , Animais , Western Blotting , Masculino , Aprendizagem em Labirinto , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA