Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(30): e202300404, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37195229

RESUMO

We report a new sodium fast-ion conductor, Na3 B5 S9 , that exhibits a high Na ion total conductivity of 0.80 mS cm-1 (sintered pellet; cold-pressed pellet=0.21 mS cm-1 ). The structure consists of corner-sharing B10 S20 supertetrahedral clusters, which create a framework that supports 3D Na ion diffusion channels. The Na ions are well-distributed in the channels and form a disordered sublattice spanning five Na crystallographic sites. The combination of structural elucidation via single crystal X-ray diffraction and powder synchrotron X-ray diffraction at variable temperatures, solid-state nuclear magnetic resonance spectra and ab initio molecular dynamics simulations reveal high Na-ion mobility (predicted conductivity: 0.96 mS cm-1 ) and the nature of the 3D diffusion pathways. Notably, the Na ion sublattice orders at low temperatures, resulting in isolated Na polyhedra and thus much lower ionic conductivity. This highlights the importance of a disordered Na ion sublattice-and existence of well-connected Na ion migration pathways formed via face-sharing polyhedra-in dictating Na ion diffusion.

2.
Angew Chem Int Ed Engl ; 62(28): e202303770, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37145989

RESUMO

Hierarchical nucleation pathways are ubiquitous in the synthesis of minerals and materials. In the case of zeolites and metal-organic frameworks, pre-organized multi-ion "secondary building units" (SBUs) have been proposed as fundamental building blocks. However, detailing the progress of multi-step reaction mechanisms from monomeric species to stable crystals and defining the structures of the SBUs remains an unmet challenge. Combining in situ nuclear magnetic resonance, small-angle X-ray scattering, and atomic force microscopy, we show that crystallization of the framework silicate, cyclosilicate hydrate, occurs through an assembly of cubic octameric Q3 8 polyanions formed through cross-linking and polymerization of smaller silicate monomers and other oligomers. These Q3 8 are stabilized by hydrogen bonds with surrounding H2 O and tetramethylammonium ions (TMA+ ). When Q3 8 levels reach a threshold of ≈32 % of the total silicate species, nucleation occurs. Further growth proceeds through the incorporation of [(TMA)x (Q3 8 )⋅n H2 O](x-8) clathrate complexes into step edges on the crystals.

3.
Nat Commun ; 14(1): 2633, 2023 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149681

RESUMO

Low-temperature standard NH3-SCR over copper-exchanged zeolite catalysts occurs on NH3-solvated Cu-ion active sites in a quasi-homogeneous manner. As key kinetically relevant reaction steps, the reaction intermediate CuII(NH3)4 ion hydrolyzes to CuII(OH)(NH3)3 ion to gain redox activity. The CuII(OH)(NH3)3 ion also transfers between neighboring zeolite cages to form highly reactive reaction intermediates. Via operando electron paramagnetic resonance spectroscopy and SCR kinetic measurements and density functional theory calculations, we demonstrate here that such kinetically relevant steps become energetically more difficult with lower support Brønsted acid strength and density. Consequently, Cu/LTA displays lower Cu atomic efficiency than Cu/CHA and Cu/AEI, which can also be rationalized by considering differences in their support topology. By carrying out hydrothermal aging to eliminate support Brønsted acid sites, both CuII(NH3)4 ion hydrolysis and CuII(OH)(NH3)3 ion migration are hindered, leading to a marked decrease in Cu atomic efficiency for all catalysts.

4.
ACS Cent Sci ; 9(2): 266-276, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36844483

RESUMO

We have screened an array of 23 metals deposited onto the metal-organic framework (MOF) NU-1000 for propyne dimerization to hexadienes. By a first-of-its-kind study utilizing data-driven algorithms and high-throughput experimentation (HTE) in MOF catalysis, yields on Cu-deposited NU-1000 were improved from 0.4 to 24.4%. Characterization of the best-performing catalysts reveal conversion to hexadiene to be due to the formation of large Cu nanoparticles, which is further supported by reaction mechanisms calculated with density functional theory (DFT). Our results demonstrate both the strengths and weaknesses of the HTE approach. As a strength, HTE excels at being able to find interesting and novel catalytic activity; any a priori theoretical approach would be hard-pressed to find success, as high-performing catalysts required highly specific operating conditions difficult to model theoretically, and initial simple single-atom models of the active site did not prove representative of the nanoparticle catalysts responsible for conversion to hexadiene. As a weakness, our results show how the HTE approach must be designed and monitored carefully to find success; in our initial campaign, only minor catalytic performances (up to 4.2% yield) were achieved, which were only improved following a complete overhaul of our HTE approach and questioning our initial assumptions.

5.
ACS Appl Mater Interfaces ; 14(47): 52886-52893, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36395424

RESUMO

To increase catalytic efficiency, mesoporous supports have been widely applied to immobilize well-defined metal oxide clusters due to their ability to stabilize highly dispersed clusters. Herein, a redox-active heterometallic Ce12V6-oxo cluster (CeV) was first presynthesized and then incorporated into mesoporous silica, SBA-15, via a straightforward impregnation method. Scanning transmission electron microscopy (STEM) and Fourier transform infrared spectroscopy (FTIR), in concert with scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), verified the successful introduction of the CeV cluster inside the pore of SBA-15. The 51V magic angle spinning solid-state nuclear magnetic resonance (51V MAS NMR) spectroscopy and differential pair distribution function (dPDF) analysis confirmed the structural integrity of the CeV cluster inside the SBA-15. The composite was then benchmarked for liquid-phase oxidation of 2-chloroethyl ethyl sulfide (CEES) under mild conditions and gas-phase oxidative dehydrogenation (ODH) of propane under high temperatures (up to 550 °C). The catalytic reactivity results demonstrated 8- and 14-fold increase in turnover frequency (TOF) values of the composite (CeV@10SBA-2) than the bulk CeV cluster under the same conditions for CEES oxidation and ODH, respectively. These results highlight the improved reactivity of the catalytically active CeV cluster as attributed to the higher dispersion of the discrete cluster upon immobilization within the SBA-15 support.

6.
J Am Chem Soc ; 144(22): 9734-9746, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35605129

RESUMO

A series of seven Cu/SSZ-13 catalysts with Si/Al = 6.7 are used to elucidate key rate-controlling factors during low-temperature standard ammonia-selective catalytic reduction (NH3-SCR), via a combination of SCR kinetics and operando electron paramagnetic resonance (EPR) spectroscopy. Strong Cu-loading-dependent kinetics, with Cu atomic efficiency increasing nearly by an order of magnitude, is found when per chabazite cage occupancy for Cu ion increases from ∼0.04 to ∼0.3. This is due mainly to the release of intercage Cu transfer constraints that facilitates the redox chemistry, as evidenced from detailed Arrhenius analysis. Operando EPR spectroscopy studies reveal strong connectivity between Cu-ion dynamics and SCR kinetics, based on which it is concluded that under low-temperature steady-state SCR, kinetically most relevant Cu species are those with the highest intercage mobility. Transient binuclear Cu species are mechanistically relevant species, but their splitting and cohabitation are indispensable for low-temperature kinetics.


Assuntos
Amônia , Cobre , Amônia/química , Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Temperatura
7.
J Phys Chem Lett ; 13(18): 4000-4006, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35482607

RESUMO

The Overhauser effect is unique among DNP mechanisms in that it requires the modulation of the electron-nuclear hyperfine interactions. While it dominates DNP in liquids and metals, where unpaired electrons are highly mobile, Overhauser DNP is possible in insulating solids if rapid structural modulations are linked to a modulation in hyperfine coupling. Herein, we report that Overhauser DNP can be triggered by the strategic addition of a methyl group, demonstrated here in a Blatter's radical. The rotation of the methyl group leads to a modulation of the hyperfine coupling to its protons, which in turn facilitates electron-nuclear cross-relaxation. Removal of the methyl protons, through deuteration, quenches the process, as does the reduction of the hyperfine coupling strength. This result suggests the possibility for the design of tailor-made Overhauser DNP polarizing agents for high-field MAS-DNP.

8.
J Phys Chem B ; 125(45): 12574-12583, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34748339

RESUMO

The diffusion behavior of Mg2+ in electrolytes is not as readily accessible as that from Li+ or Na+ utilizing PFG NMR, due to the low sensitivity, poor resolution, and rapid relaxation encountered when attempting 25Mg NMR. In MgTFSI2/DME solutions, "bound" DME (coordinating to Mg2+) and "free" DME (bulk) are distinguishable from 1H NMR. With the exchange rates between them obtained from 2D 1H EXSY NMR, we can extract the self-diffusivities of free DME and bound DME (which are equal to that of Mg2+) before the exchange occurs using PFG diffusion NMR measurements coupled with analytical formulas describing diffusion under two-site exchange. The high activation enthalpy for exhange (65-70 kJ/mol) can be explained by the structural change of bound DME as evidenced by its reduced C-H bond length. Comparison of the diffusion behaviors of Mg2+, TFSI-, DME, and Li+ reveals a relative restriction to Mg2+ diffusion that is caused by the long-range interaction between Mg2+ and solvent molecules, especially those with suppressed motions at high concentrations and low temperatures.


Assuntos
Eletrólitos , Etil-Éteres , Difusão , Solventes
9.
Nat Microbiol ; 4(12): 2498-2510, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31611640

RESUMO

It is generally believed that exchange of secondary metabolite biosynthetic gene clusters (BGCs) among closely related bacteria is an important driver of BGC evolution and diversification. Applying this idea may help researchers efficiently connect many BGCs to their products and characterize the products' roles in various environments. However, existing genetic tools support only a small fraction of these efforts. Here, we present the development of chassis-independent recombinase-assisted genome engineering (CRAGE), which enables single-step integration of large, complex BGC constructs directly into the chromosomes of diverse bacteria with high accuracy and efficiency. To demonstrate the efficacy of CRAGE, we expressed three known and six previously identified but experimentally elusive non-ribosomal peptide synthetase (NRPS) and NRPS-polyketide synthase (PKS) hybrid BGCs from Photorhabdus luminescens in 25 diverse γ-Proteobacteria species. Successful activation of six BGCs identified 22 products for which diversity and yield were greater when the BGCs were expressed in strains closely related to the native strain than when they were expressed in either native or more distantly related strains. Activation of these BGCs demonstrates the feasibility of exploiting their underlying catalytic activity and plasticity, and provides evidence that systematic approaches based on CRAGE will be useful for discovering and identifying previously uncharacterized metabolites.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Vias Biossintéticas/genética , Engenharia Genética/métodos , Família Multigênica , Recombinases/metabolismo , Metabolismo Secundário/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Genoma Bacteriano , Peptídeo Sintases , Photorhabdus/genética , Policetídeo Sintases/genética
10.
J Am Chem Soc ; 141(43): 17370-17381, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31584807

RESUMO

The reductive cleavage of aryl ether linkages is a key step in the disassembly of lignin to its monolignol components, where selectivity is determined by the kinetics of multiple parallel and consecutive liquid-phase reactions. Triphasic hydrogenolysis of 13C-labeled benzyl phenyl ether (BPE, a model compound for the major ß-O-4 linkage in lignin), catalyzed by Ni/γ-Al2O3, was observed directly at elevated temperatures (150-175 °C) and pressures (79-89 bar) using operando magic-angle spinning NMR spectroscopy. Liquid-vapor partitioning in the NMR rotor was quantified using the 13C NMR resonances for the 2-propanol solvent, whose chemical shifts report on the internal reactor temperature. At 170 °C, BPE is converted to toluene and phenol with k1 = 0.17 s-1 gcat-1 and an apparent activation barrier of (80 ± 8) kJ mol-1. Subsequent phenol hydrogenation occurs much more slowly (k2 = 0.0052 s-1 gcat-1 at 170-175 °C), such that cyclohexanol formation is significant only at higher temperatures. Toluene is stable under these reaction conditions, but its methyl group undergoes facile H/D exchange (k3 = 0.046 s-1 gcat-1 at 175 °C). While the source of the reducing equivalents for both hydrogenolysis and hydrogenation is exclusively H2/D2(g) rather than the alcohol solvent at these temperatures, the initial isotopic composition of adsorbed H/D on the catalyst surface is principally determined by the solvent isotopic composition (2-PrOH/D). All reactions are preceded by a pronounced induction period associated with catalyst activation. In air, Ni nanoparticles are passivated by a surface oxide monolayer, whose removal under H2 proceeds with an apparent activation barrier of (72 ± 13) kJ mol-1. The operando NMR spectra provide molecularly specific, time-resolved information about the multiple simultaneous and sequential processes as they occur at the solid-liquid interface.

11.
ACS Omega ; 4(5): 8167-8177, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459906

RESUMO

A comprehensive molecular analysis of a simple aqueous complexing system-U(VI) acetate-selected to be independently investigated by various spectroscopic (vibrational, luminescence, X-ray absorption, and nuclear magnetic resonance spectroscopy) and quantum chemical methods was achieved by an international round-robin test (RRT). Twenty laboratories from six different countries with a focus on actinide or geochemical research participated and contributed to this scientific endeavor. The outcomes of this RRT were considered on two levels of complexity: first, within each technical discipline, conformities as well as discrepancies of the results and their sources were evaluated. The raw data from the different experimental approaches were found to be generally consistent. In particular, for complex setups such as accelerator-based X-ray absorption spectroscopy, the agreement between the raw data was high. By contrast, luminescence spectroscopic data turned out to be strongly related to the chosen acquisition parameters. Second, the potentials and limitations of coupling various spectroscopic and theoretical approaches for the comprehensive study of actinide molecular complexes were assessed. Previous spectroscopic data from the literature were revised and the benchmark data on the U(VI) acetate system provided an unambiguous molecular interpretation based on the correlation of spectroscopic and theoretical results. The multimethodologic approach and the conclusions drawn address not only important aspects of actinide spectroscopy but particularly general aspects of modern molecular analytical chemistry.

12.
Nat Chem ; 11(10): 940-947, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451785

RESUMO

The ability to functionalize hydrocarbons with CO2 could create opportunities for high-volume CO2 utilization. However, current methods to form carbon-carbon bonds between hydrocarbons and CO2 require stoichiometric consumption of very resource-intensive reagents to overcome the low reactivity of these substrates. Here, we report a simple semi-continuous cycle that converts aromatic hydrocarbons, CO2 and alcohol into aromatic esters without consumption of stoichiometric reagents. Our strategy centres on the use of solid bases composed of an alkali carbonate (M2CO3, where M+ = K+ or Cs+) dispersed over a mesoporous support. Nanoscale confinement disrupts the crystallinity of M2CO3 and engenders strong base reactivity at intermediate temperatures. The overall cycle involves two distinct steps: (1) CO32--promoted C-H carboxylation, in which the hydrocarbon substrate is deprotonated by the supported M2CO3 and reacts with CO2 to form a supported carboxylate (RCO2M); and (2) methylation, in which RCO2M reacts with methanol and CO2 to form an isolable methyl ester with concomitant regeneration of M2CO3.

13.
Solid State Nucl Magn Reson ; 102: 31-35, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31295629

RESUMO

We present a novel nuclear magnetic resonance (NMR) probe design focused on optimizing the temperature gradient across the sample for high temperature magic angle spinning (MAS) experiments using standard rotors. Computational flow dynamics (CFD) simulations were used to assess and optimize the temperature gradient across the sample under MAS conditions. The chemical shift and linewidth of 207Pb direct polarization in lead nitrate were used to calibrate the sample temperature and temperature gradient, respectively. A temperature gradient of less than 3 °C across the sample was obtained by heating bearing gas flows and adjusting its temperature and flow rate during variable temperature (VT) experiments. A maximum temperature of 350 °C was achieved in this probe using a Varian 5 mm MAS rotor with standard Vespel drive tips and end caps. Time-resolved 13C and 1H MAS NMR experiments were performed at 325 °C and 60 bar to monitor an in-situ mixed phase reverse water gas shift reaction, industrial synthesis of CH3OH from a mixture of CO2 and H2 with a Cu/ZnO/Al2O3 catalyst, demonstrating the first in-situ NMR monitoring of a chemical system at temperatures higher than 250 °C in a pressurized environment. The combination of this high-temperature probe and high-pressure rotors will allow for in-situ NMR studies of a great variety of chemical reactions that are inaccessible to conventional NMR setup.

14.
Nat Commun ; 10(1): 1137, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850592

RESUMO

Commercial Cu/SAPO-34 selective catalytic reduction (SCR) catalysts have experienced unexpected and quite perplexing failure. Understanding the causes at an atomic level is vital for the synthesis of more robust Cu/SAPO-34 catalysts. Here we show, via application of model catalysts with homogeneously dispersed isolated Cu ions, that Cu transformations resulting from low-temperature hydrothermal aging and ambient temperature storage can be semi-quantitatively probed with 2-dimensional pulsed electron paramagnetic resonance. Coupled with kinetics, additional material characterizations and DFT simulations, we propose the following catalyst deactivation steps: (1) detachment of Cu(II) ions from cationic positions in the form of Cu(OH)2; (2) irreversible hydrolysis of the SAPO-34 framework forming terminal Al species; and (3) interaction between Cu(OH)2 and terminal Al species forming SCR inactive, Cu-aluminate like species. Especially significant is that these reactions are greatly facilitated by condensed water molecules under wet ambient conditions, causing low temperature failure of the commercial Cu/SAPO-34 catalysts.

15.
Phys Chem Chem Phys ; 21(9): 4717-4720, 2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30762854

RESUMO

NMR methods were utilized to monitor the in situ structural and dynamic changes of various species in highly alkaline tetramethylammonium (TMA) silicate solutions. Quantitative 29Si NMR, 1H, 2H, and 17O relaxation NMR, and 1H and 29Si diffusion NMR of silicates, TMA, H2O and D2O demonstrate that the growth of the cubic octamer Q38 is accompanied by reduced water mobility and increasing TMA coordination number per Q38, which reaches an equilibrium value of 4.5 at 15 °C. Temperature-dependent measurements further reveal that the increased control over speciation by TMA at lower temperatures results from the more stable ion associations via slower solvent motions.

16.
Chem Sci ; 10(42): 9880-9892, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-32015812

RESUMO

Metal-Organic Frameworks (MOFs) that catalyze hydrogenolysis reactions are rare and there is little understanding of how the MOF, hydrogen, and substrate molecules interact. In this regard, the isoreticular IRMOF-74 series, two of which are known catalysts for hydrogenolysis of aromatic C-O bonds, provides an unusual opportunity for systematic probing of these reactions. The diameter of the 1D open channels can be varied within a common topology owing to the common secondary building unit (SBU) and controllable length of the hydroxy-carboxylate struts. We show that the first four members of the IRMOF-74(Mg) series are inherently catalytic for aromatic C-O bond hydrogenolysis and that the conversion varies non-monotonically with pore size. These catalysts are recyclable and reusable, retaining their crystallinity and framework structure after the hydrogenolysis reaction. The hydrogenolysis conversion of phenylethylphenyl ether (PPE), benzylphenyl ether (BPE), and diphenyl ether (DPE) varies as PPE > BPE > DPE, consistent with the strength of the C-O bond. Counterintuitively, however, the conversion also follows the trend IRMOF-74(III) > IRMOF-74(IV) > IRMOF-74(II) > IRMOF-74(I), with little variation in the corresponding selectivity. DFT calculations suggest the unexpected behavior is due to much stronger ether and phenol binding to the Mg(ii) open metal sites (OMS) of IRMOF-74(III), resulting from a structural distortion that moves the Mg2+ ions toward the interior of the pore. Solid-state 25Mg NMR data indicate that both H2 and ether molecules interact with the Mg(ii) OMS and hydrogen-deuterium exchange reactions show that these MOFs activate dihydrogen bonds. The results suggest that both confinement and the presence of reactive metals are essential for achieving the high catalytic activity, but that subtle variations in pore structure can significantly affect the catalysis. Moreover, they challenge the notion that simply increasing MOF pore size within a constant topology will lead to higher conversions.

17.
J Cheminform ; 10(1): 52, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367288

RESUMO

When using nuclear magnetic resonance (NMR) to assist in chemical identification in complex samples, researchers commonly rely on databases for chemical shift spectra. However, authentic standards are typically depended upon to build libraries experimentally. Considering complex biological samples, such as blood and soil, the entirety of NMR spectra required for all possible compounds would be infeasible to ascertain due to limitations of available standards and experimental processing time. As an alternative, we introduce the in silico Chemical Library Engine (ISiCLE) NMR chemical shift module to accurately and automatically calculate NMR chemical shifts of small organic molecules through use of quantum chemical calculations. ISiCLE performs density functional theory (DFT)-based calculations for predicting chemical properties-specifically NMR chemical shifts in this manuscript-via the open source, high-performance computational chemistry software, NWChem. ISiCLE calculates the NMR chemical shifts of sets of molecules using any available combination of DFT method, solvent, and NMR-active nuclei, using both user-selected reference compounds and/or linear regression methods. Calculated NMR chemical shifts are provided to the user for each molecule, along with comparisons with respect to a number of metrics commonly used in the literature. Here, we demonstrate ISiCLE using a set of 312 molecules, ranging in size up to 90 carbon atoms. For each, calculation of NMR chemical shifts have been performed with 8 different levels of DFT theory, and with solvation effects using the implicit solvent Conductor-like Screening Model. The DFT method dependence of the calculated chemical shifts have been systematically investigated through benchmarking and subsequently compared to experimental data available in the literature. Furthermore, ISiCLE has been applied to a set of 80 methylcyclohexane conformers, combined via Boltzmann weighting and compared to experimental values. We demonstrate that our protocol shows promise in the automation of chemical shift calculations and, ultimately, the expansion of chemical shift libraries.

18.
Inorg Chem ; 57(12): 6903-6912, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29870242

RESUMO

Understanding fundamental Tc chemistry is important to both the remediation of nuclear waste and the reprocessing of nuclear fuel; however, current knowledge of the electronic structure and spectral signatures of low-valent Tc compounds significantly lags behind the remainder of the d-block elements. In particular, identification and treatment of Tc speciation in legacy nuclear waste is challenging due to the lack of reference data especially for Tc compounds in the less common oxidation states (I-VI). In an effort to establish a spectroscopic library corresponding to the relevant conditions of extremely high ionic strength typical for the legacy nuclear waste, compounds with the general formula of [ fac-Tc(CO)3(OH2)3- n(OH) n]1- n (where n = 0-3) were examined by a range of spectroscopic techniques including 99Tc/13C NMR, IR, XPS, and XAS. In the series of monomeric aqua species, stepwise hydrolysis results in the increase of the Tc metal center electron density and corresponding progressive decrease of the Tc-C bond distances, Tc electron binding energies, and carbonyl stretching frequencies in the order [ fac-Tc(CO)3(OH2)3]+ > [ fac-Tc(CO)3(OH2)2(OH)] > [ fac-Tc(CO)3(OH2)(OH)2]-. These results correlate with established trends of the 99Tc upfield chemical shift and carbonyl 13C downfield chemical shift. The lone exception is [ fac-Tc(CO)3(OH)]4 which exhibits a comparatively low electron density at the metal center attributed to the µ3-bridging nature of the -OH ligands causing less σ-donation and no π-donation. This work also reports the first observations of these compounds by XPS and [ fac-Tc(CO)3Cl3]2- by XAS. The unique and distinguishable spectral features of the aqua [ fac-Tc(CO)3]+ complexes lay the foundation for their identification in the complex aqueous matrixes.

19.
Nat Commun ; 9(1): 1889, 2018 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-29760476

RESUMO

The formation of traditional ionic materials occurs principally via joint accumulation of both anions and cations. Herein, we describe a previously unreported phenomenon by which macroscopic liquid-like thin layers with tunable self-organization properties form through accumulation of stable complex ions of one polarity on surfaces. Using a series of highly stable molecular anions we demonstrate a strong influence of the internal charge distribution of the molecular ions, which is usually shielded by counterions, on the properties of the layers. Detailed characterization reveals that the intrinsically unstable layers of anions on surfaces are stabilized by simultaneous accumulation of neutral molecules from the background environment. Different phases, self-organization mechanisms and optical properties are observed depending on the molecular properties of the deposited anions, the underlying surface and the coadsorbed neutral molecules. This demonstrates rational control of the macroscopic properties (morphology and size of the formed structures) of the newly discovered anion-based layers.

20.
Sci Rep ; 8(1): 813, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339803

RESUMO

The degradation and turnover of soil organic matter is an important part of global carbon cycling and of particular importance with respect to attempts to predict the response of ecosystems to global climate change. Thus, it is important to mechanistically understand the processes by which organic matter can be degraded in the soil environment, including contact with reactive or catalytic mineral surfaces. We have characterized the outcome of the interaction of two minerals, birnessite and kaolinite, with two disaccharides, cellobiose and trehalose. These results show that birnessite reacts with and degrades the carbohydrates, while kaolinite does not. The reaction of disaccharides with birnessite produces Mn(II), indicating that degradation of the disaccharides is the result of their oxidation by birnessite. Furthermore, we find that both sugars can inhibit the degradation of a model protein by birnessite, demonstrating that the presence of one organic constituent can impact abiotic degradation of another. Therefore, both the reactivity of the mineral matrix and the presence of certain organic constituents influence the outcomes of abiotic degradation. These results suggest the possibility that microorganisms may be able to control the functionality of exoenzymes through the concomitant excretion of protective organic substances, such as those found in biofilms.


Assuntos
Celobiose/metabolismo , Fenômenos Químicos , Caulim/metabolismo , Óxidos/metabolismo , Proteínas/metabolismo , Proteólise , Trealose/metabolismo , Manganês/metabolismo , Oxirredução , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA