Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766263

RESUMO

Single particle cryogenic electron microscopy (cryo-EM) as a structural biology methodology has become increasingly attractive and accessible to investigators in both academia and industry as this ever-advancing technology enables successful structural determination of a wide range of protein and nucleic acid targets. Although data for many high resolution cryo-EM structures are still obtained using a 300 kV cryogenic transmission electron microscope (cryo-TEM), a modern 200 kV cryo-TEM equipped with an advanced direct electron detector and energy filter is a cost-effective choice for most single particle applications, routinely achieving sub 3 angstrom (Å) resolution. Here, we systematically evaluate performance of one such high-end configuration - a 200 kV Glacios microscope coupled with a Falcon 4 direct electron detector and Selectris energy filter (Glacios-F4-S). First, we evaluated data quality on the standard benchmarking sample, rabbit muscle aldolase, using three of the most frequently used cryo-EM data collection software: SerialEM, Leginon and EPU, and found that - despite sample heterogeneity - all final reconstructions yield same overall resolutions of 2.6 Å and map quality when using either of the three software. Furthermore, comparison between Glacios-F4-S and a 300 kV cryo-TEM (Titan Krios with Falcon 4) revealed nominal resolution differences in overall reconstructions of a reconstituted human nucleosome core particle, achieving 2.8 and 2.5 Å, respectively. Finally, we performed comparative data analysis on the human RAD51 paralog complex, BCDX2, a four-protein complex of approximately 150 kilodaltons, and found that a small dataset (≤1,000 micrographs) was sufficient to generate a 3.3 Å reconstruction, with sufficient detail to resolve co-bound ligands, AMP-PNP and Mg +2 . In summary, this study provides evidence that the Glacios-F4-S operates equally well with all standard data collection software, and is sufficient to obtain high resolution structural information of novel macromolecular complexes, readily acquiring single particle data rivaling that of 300 kV cryo-TEMs.

2.
Nat Commun ; 14(1): 4786, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553340

RESUMO

ISG15 plays a crucial role in the innate immune response and has been well-studied due to its antiviral activity and regulation of signal transduction, apoptosis, and autophagy. ISG15 is a ubiquitin-like protein that is activated by an E1 enzyme (Uba7) and transferred to a cognate E2 enzyme (UBE2L6) to form a UBE2L6-ISG15 intermediate that functions with E3 ligases that catalyze conjugation of ISG15 to target proteins. Despite its biological importance, the molecular basis by which Uba7 catalyzes ISG15 activation and transfer to UBE2L6 is unknown as there is no available structure of Uba7. Here, we present cryo-EM structures of human Uba7 in complex with UBE2L6, ISG15 adenylate, and ISG15 thioester intermediate that are poised for catalysis of Uba7-UBE2L6-ISG15 thioester transfer. Our structures reveal a unique overall architecture of the complex compared to structures from the ubiquitin conjugation pathway, particularly with respect to the location of ISG15 thioester intermediate. Our structures also illuminate the molecular basis for Uba7 activities and for its exquisite specificity for ISG15 and UBE2L6. Altogether, our structural, biochemical, and human cell-based data provide significant insights into the functions of Uba7, UBE2L6, and ISG15 in cells.


Assuntos
Citocinas , Enzimas de Conjugação de Ubiquitina , Humanos , Citocinas/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Microscopia Crioeletrônica , Ubiquitina/metabolismo , Ubiquitinas/genética , Ubiquitinas/metabolismo
3.
Nature ; 619(7970): 640-649, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344589

RESUMO

Homologous recombination (HR) fulfils a pivotal role in the repair of DNA double-strand breaks and collapsed replication forks1. HR depends on the products of several paralogues of RAD51, including the tetrameric complex of RAD51B, RAD51C, RAD51D and XRCC2 (BCDX2)2. BCDX2 functions as a mediator of nucleoprotein filament assembly by RAD51 and single-stranded DNA (ssDNA) during HR, but its mechanism remains undefined. Here we report cryogenic electron microscopy reconstructions of human BCDX2 in apo and ssDNA-bound states. The structures reveal how the amino-terminal domains of RAD51B, RAD51C and RAD51D participate in inter-subunit interactions that underpin complex formation and ssDNA-binding specificity. Single-molecule DNA curtain analysis yields insights into how BCDX2 enhances RAD51-ssDNA nucleoprotein filament assembly. Moreover, our cryogenic electron microscopy and functional analyses explain how RAD51C alterations found in patients with cancer3-6 inactivate DNA binding and the HR mediator activity of BCDX2. Our findings shed light on the role of BCDX2 in HR and provide a foundation for understanding how pathogenic alterations in BCDX2 impact genome repair.


Assuntos
Proteínas de Ligação a DNA , Recombinação Homóloga , Complexos Multiproteicos , Humanos , Microscopia Crioeletrônica , Replicação do DNA , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Neoplasias/genética , Nucleoproteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Rad51 Recombinase/ultraestrutura , Especificidade por Substrato
4.
Prostate ; 83(3): 207-226, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36443902

RESUMO

INTRODUCTION: The 2022 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Exploring New Frontiers in Prostate Cancer Research," was held from June 23 to 26, 2022, at the University of California, Los Angeles, Luskin Conference Center, in Los Angeles, CA. METHODS: The CHPCA Meeting is an annual discussion-oriented scientific conference organized by the Prostate Cancer Foundation, that focuses on emerging and next-step topics deemed critical for making the next major advances in prostate cancer research and clinical care. The 2022 CHPCA Meeting included 35 talks over 10 sessions and was attended by 73 academic investigators. RESULTS: Major topic areas discussed at the meeting included: prostate cancer diversity and disparities, the impact of social determinants on research and patient outcomes, leveraging real-world and retrospective data, development of artificial intelligence biomarkers, androgen receptor (AR) signaling biology and new strategies for targeting AR, features of homologous recombination deficient prostate cancer, and future directions in immunotherapy and nuclear theranostics. DISCUSSION: This article summarizes the scientific presentations from the 2022 CHPCA Meeting, with the goal that dissemination of this knowledge will contribute to furthering global prostate cancer research efforts.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Inteligência Artificial , Imunoterapia/métodos , Próstata , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Estudos Retrospectivos , Medicina de Precisão/métodos
5.
Nat Commun ; 13(1): 4880, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986001

RESUMO

The E1 enzyme Uba6 initiates signal transduction by activating ubiquitin and the ubiquitin-like protein FAT10 in a two-step process involving sequential catalysis of adenylation and thioester bond formation. To gain mechanistic insights into these processes, we determined the crystal structure of a human Uba6/ubiquitin complex. Two distinct architectures of the complex are observed: one in which Uba6 adopts an open conformation with the active site configured for catalysis of adenylation, and a second drastically different closed conformation in which the adenylation active site is disassembled and reconfigured for catalysis of thioester bond formation. Surprisingly, an inositol hexakisphosphate (InsP6) molecule binds to a previously unidentified allosteric site on Uba6. Our structural, biochemical, and biophysical data indicate that InsP6 allosterically inhibits Uba6 activity by altering interconversion of the open and closed conformations of Uba6 while also enhancing its stability. In addition to revealing the molecular mechanisms of catalysis by Uba6 and allosteric regulation of its activities, our structures provide a framework for developing Uba6-specific inhibitors and raise the possibility of allosteric regulation of other E1s by naturally occurring cellular metabolites.


Assuntos
Enzimas Ativadoras de Ubiquitina , Ubiquitina , Catálise , Domínio Catalítico , Humanos , Ubiquitina/metabolismo , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitinas/metabolismo
6.
Cell Chem Biol ; 29(6): 927-929, 2022 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-35714591

RESUMO

In this issue of Cell Chemical Biology, Douglas et al. describe a potent, specific, and cell-permeable furin inhibitor that interacts with a cryptic binding site to rescue hallmarks of cystic fibrosis in human ex vivo models. BOS-318 holds promise for development of therapeutics targeting an array of furin-dependent pathologies.


Assuntos
Fibrose Cística , Furina , Sítios de Ligação , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Furina/química , Furina/metabolismo , Humanos , Domínios Proteicos
7.
Mol Cell ; 82(11): 2021-2031.e5, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35447082

RESUMO

The androgen receptor (AR) is a nuclear receptor that governs gene expression programs required for prostate development and male phenotype maintenance. Advanced prostate cancers display AR hyperactivation and transcriptome expansion, in part, through AR amplification and interaction with oncoprotein cofactors. Despite its biological importance, how AR domains and cofactors cooperate to bind DNA has remained elusive. Using single-particle cryo-electron microscopy, we isolated three conformations of AR bound to DNA, showing that AR forms a non-obligate dimer, with the buried dimer interface utilized by ancestral steroid receptors repurposed to facilitate cooperative DNA binding. We identify novel allosteric surfaces which are compromised in androgen insensitivity syndrome and reinforced by AR's oncoprotein cofactor, ERG, and by DNA-binding motifs. Finally, we present evidence that this plastic dimer interface may have been adopted for transactivation at the expense of DNA binding. Our work highlights how fine-tuning AR's cooperative interactions translate to consequences in development and disease.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Microscopia Crioeletrônica , DNA/metabolismo , Dimerização , Humanos , Masculino , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Ativação Transcricional
8.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782132

RESUMO

Quality control requires discrimination between functional and aberrant species to selectively target aberrant substrates for destruction. Nuclear RNA quality control in Saccharomyces cerevisiae includes the TRAMP complex that marks RNA for decay via polyadenylation followed by helicase-dependent 3' to 5' degradation by the RNA exosome. Using reconstitution biochemistry, we show that polyadenylation and helicase activities of TRAMP cooperate with processive and distributive exoribonuclease activities of the nuclear RNA exosome to protect stable RNA from degradation while selectively targeting and degrading less stable RNA. Substrate discrimination is lost when the distributive exoribonuclease activity of Rrp6 is inactivated, leading to degradation of stable and unstable RNA species. These data support a proofreading mechanism in which deadenylation by Rrp6 competes with Mtr4-dependent degradation to protect stable RNA while selectively targeting and degrading unstable RNA.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Estabilidade de RNA , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Exossomos/genética , Exossomos/metabolismo , Poliadenilação , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética
9.
Proc Natl Acad Sci U S A ; 117(15): 8584-8592, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32220959

RESUMO

The androgen receptor (AR) is a type I nuclear hormone receptor and the primary drug target in prostate cancer due to its role as a lineage survival factor in prostate luminal epithelium. In prostate cancer, the AR cistrome is reprogrammed relative to normal prostate epithelium and particularly in cancers driven by oncogenic ETS fusion genes. The molecular basis for this change has remained elusive. Using purified proteins, we report a minimal cell-free system that demonstrates interdomain cooperativity between the ligand (LBD) and DNA binding domains (DBD) of AR, and its autoinhibition by the N terminus of AR. Furthermore, we identify ERG as a cofactor that activates AR's ability to bind DNA in both high and lower affinity contexts through direct interaction within a newly identified AR-interacting motif (AIM) in the ETS domain, independent of ERG's own DNA binding ability. Finally, we present evidence that this interaction is conserved among ETS factors whose expression is altered in prostate cancer. Our work highlights, at a biochemical level, how tumor-initiating ETS translocations result in reprogramming of the AR cistrome.


Assuntos
DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Receptores Androgênicos/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , DNA/genética , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-ets/genética , Receptores Androgênicos/química , Receptores Androgênicos/genética , Regulador Transcricional ERG/química , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo , Células Tumorais Cultivadas
10.
Proc Natl Acad Sci U S A ; 117(2): 982-992, 2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31879344

RESUMO

The exoribonuclease Rrp6p is critical for RNA decay in the nucleus. While Rrp6p acts on a large range of diverse substrates, it does not indiscriminately degrade all RNAs. How Rrp6p accomplishes this task is not understood. Here, we measure Rrp6p-RNA binding and degradation kinetics in vitro at single-nucleotide resolution and find an intrinsic substrate selectivity that enables Rrp6p to discriminate against specific RNAs. RNA length and the four 3'-terminal nucleotides contribute most to substrate selectivity and collectively enable Rrp6p to discriminate between different RNAs by several orders of magnitude. The most pronounced discrimination is seen against RNAs ending with CCA-3'. These RNAs correspond to 3' termini of uncharged tRNAs, which are not targeted by Rrp6p in cells. The data show that in contrast to many other proteins that use substrate selectivity to preferentially interact with specific RNAs, Rrp6p utilizes its selectivity to discriminate against specific RNAs. This ability allows Rrp6p to target diverse substrates while avoiding a subset of RNAs.


Assuntos
Exorribonucleases/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Escherichia coli , Exorribonucleases/química , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Cinética , RNA/química , RNA de Transferência/metabolismo , Especificidade por Substrato
11.
Elife ; 62017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28742025

RESUMO

Nuclear RNA exosomes catalyze a range of RNA processing and decay activities that are coordinated in part by cofactors, including Mpp6, Rrp47, and the Mtr4 RNA helicase. Mpp6 interacts with the nine-subunit exosome core, while Rrp47 stabilizes the exoribonuclease Rrp6 and recruits Mtr4, but it is less clear if these cofactors work together. Using biochemistry with Saccharomyces cerevisiae proteins, we show that Rrp47 and Mpp6 stimulate exosome-mediated RNA decay, albeit with unique dependencies on elements within the nuclear exosome. Mpp6-exosomes can recruit Mtr4, while Mpp6 and Rrp47 each contribute to Mtr4-dependent RNA decay, with maximal Mtr4-dependent decay observed with both cofactors. The 3.3 Å structure of a twelve-subunit nuclear Mpp6 exosome bound to RNA shows the central region of Mpp6 bound to the exosome core, positioning its Mtr4 recruitment domain next to Rrp6 and the exosome central channel. Genetic analysis reveals interactions that are largely consistent with our model.


Assuntos
RNA Helicases DEAD-box/metabolismo , Exossomos/metabolismo , Estabilidade de RNA , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Cristalografia por Raios X , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Análise Mutacional de DNA , Proteínas de Ligação a DNA/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/química , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Modelos Moleculares , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
12.
Nature ; 546(7660): 671-675, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28614298

RESUMO

Half of all prostate cancers are caused by the TMPRSS2-ERG gene-fusion, which enables androgens to drive expression of the normally silent E26 transformation-specific (ETS) transcription factor ERG in prostate cells. Recent genomic landscape studies of such cancers have reported recurrent point mutations and focal deletions of another ETS member, the ETS2 repressor factor ERF. Here we show these ERF mutations cause decreased protein stability and mostly occur in tumours without ERG upregulation. ERF loss recapitulates the morphological and phenotypic features of ERG gain in normal mouse prostate cells, including expansion of the androgen receptor transcriptional repertoire, and ERF has tumour suppressor activity in the same genetic background of Pten loss that yields oncogenic activity by ERG. In the more common scenario of ERG upregulation, chromatin immunoprecipitation followed by sequencing indicates that ERG inhibits the ability of ERF to bind DNA at consensus ETS sites both in normal and in cancerous prostate cells. Consistent with a competition model, ERF overexpression blocks ERG-dependent tumour growth, and ERF loss rescues TMPRSS2-ERG-positive prostate cancer cells from ERG dependency. Collectively, these data provide evidence that the oncogenicity of ERG is mediated, in part, by competition with ERF and they raise the larger question of whether other gain-of-function oncogenic transcription factors might also inactivate endogenous tumour suppressors.


Assuntos
Carcinogênese/genética , Mutação , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteínas Repressoras/genética , Androgênios/metabolismo , Animais , Linhagem Celular Tumoral , Genes/genética , Humanos , Masculino , Camundongos , Próstata/metabolismo , Estabilidade Proteica , Receptores Androgênicos/metabolismo , Proteínas Repressoras/deficiência , Proteínas Repressoras/metabolismo , Serina Endopeptidases/deficiência , Serina Endopeptidases/metabolismo , Transdução de Sinais , Regulador Transcricional ERG/deficiência , Regulador Transcricional ERG/metabolismo , Transcriptoma/genética , Proteínas Supressoras de Tumor/metabolismo , Regulação para Cima
13.
Nucleic Acids Res ; 45(2): 846-860, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-27899565

RESUMO

The eukaryotic RNA exosome is an essential, multi-subunit complex that catalyzes RNA turnover, maturation, and quality control processes. Its non-catalytic donut-shaped core includes 9 subunits that associate with the 3' to 5' exoribonucleases Rrp6, and Rrp44/Dis3, a subunit that also catalyzes endoribonuclease activity. Although recent structures and biochemical studies of RNA bound exosomes from S. cerevisiae revealed that the Exo9 central channel guides RNA to either Rrp6 or Rrp44 using partially overlapping and mutually exclusive paths, several issues related to RNA recruitment remain. Here, we identify activities for the highly basic Rrp6 C-terminal tail that we term the 'lasso' because it binds RNA and stimulates ribonuclease activities associated with Rrp44 and Rrp6 within the 11-subunit nuclear exosome. Stimulation is dependent on the Exo9 central channel, and the lasso contributes to degradation and processing activities of exosome substrates in vitro and in vivo. Finally, we present evidence that the Rrp6 lasso may be a conserved feature of the eukaryotic RNA exosome.


Assuntos
Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Domínios e Motivos de Interação entre Proteínas , RNA/metabolismo , Exorribonucleases/química , Complexo Multienzimático de Ribonucleases do Exossomo/química , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Humanos , Modelos Moleculares , Conformação Molecular , Mutação , Ligação Proteica , RNA/química , RNA/genética , Estabilidade de RNA
14.
Mol Cell ; 64(4): 734-745, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27818140

RESUMO

The eukaryotic RNA exosome is an essential and conserved 3'-to-5' exoribonuclease complex that degrades or processes nearly every class of cellular RNA. The nuclear RNA exosome includes a 9-subunit non-catalytic core that binds Rrp44 (Dis3) and Rrp6 subunits to modulate their processive and distributive 3'-to-5' exoribonuclease activities, respectively. Here we utilize an engineered RNA with two 3' ends to obtain a crystal structure of an 11-subunit nuclear exosome bound to RNA at 3.1 Å. The structure reveals an extended RNA path to Rrp6 that penetrates into the non-catalytic core; contacts between the non-catalytic core and Rrp44, which inhibit exoribonuclease activity; and features of the Rrp44 exoribonuclease site that support its ability to degrade 3' phosphate RNA substrates. Using reconstituted exosome complexes, we show that 3' phosphate RNA is not a substrate for Rrp6 but is readily degraded by Rrp44 in the nuclear exosome.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/química , Subunidades Proteicas/metabolismo , RNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulação Alostérica , Motivos de Aminoácidos , Sítios de Ligação , Núcleo Celular/genética , Núcleo Celular/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/ultraestrutura , Expressão Gênica , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/genética , Clivagem do RNA , RNA Fúngico/química , RNA Fúngico/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Termodinâmica
15.
Nature ; 511(7510): 435-9, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25043052

RESUMO

The eukaryotic RNA exosome processes and degrades RNA by directing substrates to the distributive or processive 3' to 5' exoribonuclease activities of Rrp6 or Rrp44, respectively. The non-catalytic nine-subunit exosome core (Exo9) features a prominent central channel. Although RNA can pass through the channel to engage Rrp44, it is not clear how RNA is directed to Rrp6 or whether Rrp6 uses the central channel. Here we report a 3.3 Å crystal structure of a ten-subunit RNA exosome complex from Saccharomyces cerevisiae composed of the Exo9 core and Rrp6 bound to single-stranded poly(A) RNA. The Rrp6 catalytic domain rests on top of the Exo9 S1/KH ring above the central channel, the RNA 3' end is anchored in the Rrp6 active site, and the remaining RNA traverses the S1/KH ring in an opposite orientation to that observed in a structure of a Rrp44-containing exosome complex. Solution studies with human and yeast RNA exosome complexes suggest that the RNA path to Rrp6 is conserved and dependent on the integrity of the S1/KH ring. Although path selection to Rrp6 or Rrp44 is stochastic in vitro, the fate of a particular RNA may be determined in vivo by the manner in which cofactors present RNA to the RNA exosome.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/química , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Poli A/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Domínio Catalítico , Cristalografia por Raios X , Exorribonucleases/metabolismo , Humanos , Modelos Moleculares , Poli A/química
16.
Mol Cell ; 48(1): 133-44, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22902556

RESUMO

The RNA exosome is an essential multisubunit ribonuclease (RNase) that contributes to cytoplasmic and nuclear RNA decay and quality control. The 9-subunit exosome core (Exo9) features a prominent central channel formed by stacked asymmetric rings of six RNase PH-like proteins and three S1/KH domain proteins. Exo9 is catalytically inert but associates with Rrp44, an endoribonuclease and processive 3'→5' exoribonuclease, and Rrp6, a distributive 3'→5' exoribonuclease. We show that Exo9 and its central channel modulate all three yeast exosome RNase activities because channel occlusion attenuates RNA binding and RNase activities in vitro and fails to complement exosome functions in vivo. We find that Rrp6 stimulates Rrp44 RNase activities and that Rrp6 is inhibited by a mutation in the Rrp44 exoribonuclease active site in 11-subunit nuclear exosomes. These results suggest the exosome core and central channel is essential because it modulates each of the known RNase activities of the yeast RNA exosome.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Saccharomyces cerevisiae/enzimologia , Domínio Catalítico/genética , Núcleo Celular/enzimologia , Citoplasma/enzimologia , Endorribonucleases/química , Endorribonucleases/genética , Endorribonucleases/metabolismo , Exorribonucleases/química , Exorribonucleases/genética , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/química , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Modelos Moleculares , Mutação , Subunidades Proteicas , RNA Fúngico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Enzymes ; 31: 53-75, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-27166440

RESUMO

The composition of the multisubunit eukaryotic RNA exosome was described more than a decade ago, and structural studies conducted since that time have contributed to our mechanistic understanding of factors that are required for 3'-to-5' RNA processing and decay. This chapter describes the organization of the eukaryotic RNA exosome with a focus on presenting results related to the noncatalytic nine-subunit exosome core as well as the hydrolytic exo- and endoribonuclease Rrp44 (Dis3) and the exoribonuclease Rrp6. This is achieved in large part by describing crystal structures of Rrp44, Rrp6, and the nine-subunit exosome core with an emphasis on how these molecules interact to endow the RNA exosome with its catalytic activities.

18.
J Nutr ; 139(11): 2018-23, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19776179

RESUMO

We have previously shown improved hemoglobin (Hb) repletion efficiency by supplementing a 50:50 mixture of short (P95) and long-chain (HP) inulin (Synergy 1, BENEO-Orafti) into a corn-soybean meal-basal diet (BD) for young pigs. In this study, weanling pigs (5 or 6 wk old) were fed the BD or the BD + 4% of P95, HP, or Synergy 1 (50:50 mixtures of HP and P95) for 5-7 wk. Blood Hb concentrations of pigs were measured weekly and digesta samples were collected at the end of the trial. In a replicate experiment, total RNA was isolated from the liver and mucosa of duodenum, ileum, cecum, and colon of all pigs at the end of the trial. Relative mRNA expression of 27 genes, including iron and inflammation-related genes, was quantified using real-time quantitative-PCR. Although all 3 types of inulin resulted in similar improvements (P < 0.05) in blood Hb concentration and liver ferritin protein amount, neither type of inulin was detectable in the digesta of cecum or colon. Supplemental inulin enhanced the expression of iron-storing protein genes but decreased that of inflammation-related genes. Such effects were more pronounced (P < 0.05) in the mucosa of the lower than the upper gut and were seen on 7 genes in liver. In conclusion, all 3 types of inulin shared similar efficacy and possibly similar modes of action in improving dietary iron utilization by young pigs. Suppressing inflammation-induced genes that can negatively influence iron metabolism might help explain the benefit of inulin.


Assuntos
Inflamação/genética , Insulina/administração & dosagem , Ferro/metabolismo , Doenças dos Suínos/genética , Suínos/genética , Animais , Ceco/fisiologia , Colo/fisiologia , Primers do DNA , Dieta , Digestão/fisiologia , Ferritinas/efeitos dos fármacos , Ferritinas/genética , Ferritinas/metabolismo , Hemoglobinas/efeitos dos fármacos , Hemoglobinas/metabolismo , Inflamação/prevenção & controle , Inflamação/veterinária , Insulina/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Reação em Cadeia da Polimerase , RNA/genética , RNA/isolamento & purificação , RNA Mensageiro/genética , Desmame
19.
Hum Mol Genet ; 17(23): 3806-13, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18775956

RESUMO

Patients with Smith-Lemli-Opitz syndrome (SLOS) are born with multiple congenital abnormalities. Postnatal cholesterol supplementation is provided; however, it cannot correct developmental malformations due to in utero cholesterol deficit. Increased transport of cholesterol from maternal to fetal circulation might attenuate congenital malformations. The cholesterol transporters Abca1, Abcg1, and Sr-b1 are present in placenta; however, their potential role in placental transport remains undetermined. In mice, expression analyses showed that Abca1 and Abcg1 transcripts increased 2-3-fold between embryonic days 13.5 and 18.5 in placental tissue; whereas, Sr-b1 expression decreased. To examine the functional role of Abca1, Abcg1 and Sr-b1 we measured the maternal-fetal transfer of (14)C-cholesterol in corresponding mutant embryos. Disruption of either Abca1 or Sr-b1 decreased cholesterol transfer by approximately 30%. In contrast, disruption of the Abcg1 had no effect. Treatment of pregnant C57Bl/6 female mice with TO901317, an LXR-agonist, increased both Abca1 expression and maternal-fetal cholesterol transfer to the fetus. In an SLOS mouse model (Dhcr7(-/-)), which is incapable of de novo synthesis of cholesterol, in utero treatment with TO901317 resulted in increased cholesterol content in Dhcr7(-/-) embryos. Our data support the hypothesis that Abca1, and possibly Sr-b1, contributes to transport maternal cholesterol to the developing fetus. Furthermore, we show, as a proof of principle, that modulating maternal-fetal cholesterol transport has potential for in utero therapy of SLOS.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo , Placenta/metabolismo , Síndrome de Smith-Lemli-Opitz/metabolismo , Síndrome de Smith-Lemli-Opitz/terapia , Útero/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico , Feminino , Humanos , Hidrocarbonetos Fluorados/uso terapêutico , Lipoproteínas/genética , Lipoproteínas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Circulação Placentária , Gravidez , Síndrome de Smith-Lemli-Opitz/embriologia , Sulfonamidas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA