Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 257: 126974, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35091344

RESUMO

Emergence of antibiotic resistant bacteria is evolving at an alarming pace; therefore, we must start turning to alternative approaches. One of these, could be the use of antibiotic adjuvants that enhances the effect of antibiotics towards resistant bacteria. A novel antibiotic adjuvant is cannabidiol (CBD), which we have previously shown can enhance the effect of bacitracin (BAC). BAC targets cell wall synthesis by inhibiting dephosphorylation of the lipid carrier undecaprenyl pyrophosphate prior to recycling across the membrane. However, the mechanism underlying this CBD mediated potentiation of BAC has remained unknown. To explore this, we examined resistance to CBD in Staphylococcus aureus through daily exposures to CBD. By subsequent whole genome sequencing, we observed multiple genes to be mutated, including the farE/farR system encoding a fatty acid efflux pump (FarE) and its regulator (FarR). Importantly, recreation of mutations in these genes showed decreased susceptibility towards the combination of CBD and BAC. Furthermore, we searched the Nebraska Transposon Mutant Library for CBD susceptible strains and identified menH encoding a protein participating in menaquinone biosynthesis. Strains containing deletions in this and other menaquinone related genes showed increased susceptibility towards CBD, while addition of exogenous menaquinone reversed the effect and reduced susceptible towards CBD. These results suggest that CBD potentiates BAC by redirecting the isoprenoid precursor isopentenyl pyrophosphate towards production of menaquinone rather than the lipid carrier undecaprenyl pyrophosphate, which dephosphorylation is inhibited by BAC. This in turn might decrease the level of undecaprenyl pyrophosphate thus enhancing the effect of BAC. Our study illustrates how antibiotic adjuvants may apply to enhance efficacy of antimicrobial compounds.


Assuntos
Canabidiol , Staphylococcus aureus , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Vitamina K 2
2.
Sci Rep ; 11(1): 6037, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727596

RESUMO

Staphylococcus aureus is the cause of serious vascular infections such as sepsis and endocarditis. These infections are notoriously difficult to treat, and it is believed that the ability of S. aureus to invade endothelial cells and persist intracellularly is a key mechanism for persistence despite ongoing antibiotic treatment. Here, we used dual RNA sequencing to study the simultaneous transcriptional response of S. aureus and human endothelial cells during in vitro infections. We revealed discrete and shared differentially expressed genes for both host and pathogen at the different stages of infection. While the endothelial cells upregulated genes involved in interferon signalling and antigen presentation during late infection, S. aureus downregulated toxin expression while upregulating genes related to iron scavenging. In conclusion, the presented data provide an important resource to facilitate functional investigations into host-pathogen interaction during S. aureus invasive infection and a basis for identifying novel drug target sites.


Assuntos
Interações Hospedeiro-Patógeno , Células Endoteliais da Veia Umbilical Humana/metabolismo , Transdução de Sinais , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/fisiologia , Transcrição Gênica , Regulação para Cima , Células Endoteliais da Veia Umbilical Humana/microbiologia , Humanos
3.
Sci Rep ; 10(1): 4112, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139776

RESUMO

The cannabinoid cannabidiol (CBD) is characterised in this study as a helper compound against resistant bacteria. CBD potentiates the effect of bacitracin (BAC) against Gram-positive bacteria (Staphylococcus species, Listeria monocytogenes, and Enterococcus faecalis) but appears ineffective against Gram-negative bacteria. CBD reduced the MIC value of BAC by at least 64-fold and the combination yielded an FIC index of 0.5 or below in most Gram-positive bacteria tested. Morphological changes in S. aureus as a result of the combination of CBD and BAC included several septa formations during cell division along with membrane irregularities. Analysis of the muropeptide composition of treated S. aureus indicated no changes in the cell wall composition. However, CBD and BAC treated bacteria did show a decreased rate of autolysis. The bacteria further showed a decreased membrane potential upon treatment with CBD; yet, they did not show any further decrease upon combination treatment. Noticeably, expression of a major cell division regulator gene, ezrA, was reduced two-fold upon combination treatment emphasising the impact of the combination on cell division. Based on these observations, the combination of CBD and BAC is suggested to be a putative novel treatment in clinical settings for treatment of infections with antibiotic resistant Gram-positive bacteria.


Assuntos
Bacitracina/farmacologia , Canabidiol/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Autólise , Parede Celular/efeitos dos fármacos , Farmacorresistência Bacteriana , Sinergismo Farmacológico , Bactérias Gram-Positivas/genética , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase , Transcrição Gênica
4.
PLoS One ; 13(8): e0201767, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30089175

RESUMO

Staphylococcus aureus has developed resistance towards the most commonly used anti-staphylococcal antibiotics. Therefore, there is an urgent need to find new treatment opportunities. A new approach relies on the use of helper compounds, which are able to potentiate the effect of antibiotics. A well-studied helper compound is thioridazine, which potentiates the effect of the ß-lactam antibiotic dicloxacillin against Methicillin-resistant Staphylococcus aureus (MRSA). In order to identify thioridazine's mechanism of action and how it potentiates the effect of dicloxacillin, we generated thioridazine resistant strains of MRSA USA300 by serial passage experiments. Selected strains were whole-genome sequenced to find mutations causing thioridazine resistance. Genes observed to be mutated were attempted deleted in MRSA USA300. The cls gene encoding a cardiolipin synthase important for synthesis of the membrane lipid cardiolipin was found to be mutated in thioridazine resistant strains. Deletion of this gene resulted in a two-fold increased Minimum inhibitory concentrations (MIC) value for thioridazine compared to the wild type and decreased susceptibility similar to the thioridazine resistant strains. Since cardiolipin likely plays a role in resistance towards thioridazine, it might also be important for the mechanism of action behind the potentiating effect of thioridazine. TDZ is known to intercalate into the membrane and we show here that TDZ can depolarize the plasma membrane. However, our results indicate that the membrane potential reducing effect of TDZ is independent of the resistance mechanism.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/fisiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Tioridazina/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cardiolipinas/metabolismo , Dicloxacilina/farmacologia , Farmacorresistência Bacteriana/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Mutação , Filogenia , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA