Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Phys Med Biol ; 69(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385258

RESUMO

Objective. Prompt gamma photon, prompt x-ray, and induced positron imaging are possible methods for observing a proton beam's shape from outside the subject. However, since these three types of images have not been measured simultaneously nor compared using the same subject, their advantages and disadvantages remain unknown for imaging beam shapes in therapy. To clarify these points, we developed a triple-imaging-modality system to simultaneously measure prompt gamma photons, prompt x-rays, and induced positrons during proton beam irradiation to a phantom.Approach. The developed triple-imaging-modality system consists of a gamma camera, an x-ray camera, and a dual-head positron emission tomography (PET) system. During 80 MeV proton beam irradiation to a polymethyl methacrylate (PMMA) phantom, imaging of prompt gamma photons was conducted by the developed gamma camera from one side of the phantom. Imaging of prompt x-rays was conducted by the developed x-ray camera from the other side. Induced positrons were measured by the developed dual-head PET system set on the upper and lower sides of the phantom.Main results. With the proposed triple-imaging-modality system, we could simultaneously image the prompt gamma photons and prompt x-rays during proton beam irradiation. Induced positron distributions could be measured after the irradiation by the PET system and the gamma camera. Among these imaging modalities, image quality was the best for the induced positrons measured by PET. The estimated ranges were actually similar to those imaged with prompt gamma photons, prompt x-rays and induced positrons measured by PET.Significance. The developed triple-imaging-modality system made possible to simultaneously measure the three different beam images. The system will contribute to increasing the data available for imaging in therapy and will contribute to better estimating the shapes or ranges of proton beam.


Assuntos
Terapia com Prótons , Prótons , Raios X , Elétrons , Terapia com Prótons/métodos , Tomografia Computadorizada por Raios X , Fótons/uso terapêutico , Raios gama , Imagens de Fantasmas , Método de Monte Carlo
2.
J Radiol Prot ; 44(1)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38232406

RESUMO

In the medical and nuclear fields, there are environments where exposure to photons with energies above several MeV can result in problems. The National Metrology Institute of Japan has developed a high-energy photon field using a 15 MeV electron beam of a clinical linear accelerator with a copper target and an aluminium filter unit to facilitate dosimeter calibration in terms of air kerma. To determine the air kerma rate, the energy fluence distribution at a reference point was calculated, and both calculations and experiments evaluated the effective energy and spatial dose distribution. Moreover, to validate the air kerma measurement, two commercial cavity chambers were calibrated in a developed photon field. The results obtained exhibited a 4% difference compared with those in a Co-60γ-ray reference field.


Assuntos
Elétrons , Radiometria , Radiometria/métodos , Fótons , Aceleradores de Partículas , Japão , Calibragem
3.
J Physiol ; 602(3): 461-484, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38165254

RESUMO

Acute cardiovascular physical exercise improves cognitive performance, as evidenced by a reduction in reaction time (RT). However, the mechanistic understanding of how this occurs is elusive and has not been rigorously investigated in humans. Here, using positron emission tomography (PET) with [11 C]raclopride, in a multi-experiment study we investigated whether acute exercise releases endogenous dopamine (DA) in the brain. We hypothesized that acute exercise augments the brain DA system, and that RT improvement is correlated with this endogenous DA release. The PET study (Experiment 1: n = 16) demonstrated that acute physical exercise released endogenous DA, and that endogenous DA release was correlated with improvements in RT of the Go/No-Go task. Thereafter, using two electrical muscle stimulation (EMS) studies (Experiments 2 and 3: n = 18 and 22 respectively), we investigated what triggers RT improvement. The EMS studies indicated that EMS with moderate arm cranking improved RT, but RT was not improved following EMS alone or EMS combined with no load arm cranking. The novel mechanistic findings from these experiments are: (1) endogenous DA appears to be an important neuromodulator for RT improvement and (2) RT is only altered when exercise is associated with central signals from higher brain centres. Our findings explain how humans rapidly alter their behaviour using neuromodulatory systems and have significant implications for promotion of cognitive health. KEY POINTS: Acute cardiovascular exercise improves cognitive performance, as evidenced by a reduction in reaction time (RT). However, the mechanistic understanding of how this occurs is elusive and has not been rigorously investigated in humans. Using the neurochemical specificity of [11 C]raclopride positron emission tomography, we demonstrated that acute supine cycling released endogenous dopamine (DA), and that this release was correlated with improved RT. Additional electrical muscle stimulation studies demonstrated that peripherally driven muscle contractions (i.e. exercise) were insufficient to improve RT. The current study suggests that endogenous DA is an important neuromodulator for RT improvement, and that RT is only altered when exercise is associated with central signals from higher brain centres.


Assuntos
Dopamina , Tomografia por Emissão de Pósitrons , Humanos , Racloprida , Tempo de Reação , Tomografia por Emissão de Pósitrons/métodos , Exercício Físico , Neurotransmissores
4.
Radiat Prot Dosimetry ; 200(2): 130-142, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-37961917

RESUMO

Previously, we have developed DynamicMC for modeling relative movement of Oak Ridge National Laboratory phantom in a radiation field for the Monte Carlo N-Particle package (Health Physics. 2023,124(4):301-309). Using this software, three-dimensional dose distributions in a phantom irradiated by a certain mono-energetic (Mono E) source can be deduced through its graphical user interface. In this study, we extended DynamicMC to be used in combination with the Particle and Heavy Ion Transport code System (PHITS) by providing it with a higher flexibility for dynamic movement for an anthropomorphic phantom. For this purpose, we implemented four new functions into the software, which are (1) to generate not only Mono E sources but also those having an energy spectrum of an arbitrary radioisotope (2) to calculate the absorbed doses for several radiologically important organs (3) to automatically average the calculated absorbed doses along the path of the phantom and (4) to generate user-defined slab shielding materials. The first and third items utilize the PHITS-specific modalities named radioisotope-source and sumtally functions, respectively. The computational cost and complexity can be dramatically reduced with these features. We anticipate that the present work and the developed open-source tools will be in the interest of nuclear radiation physics community for research and teaching purposes.


Assuntos
Física Médica , Radiometria , Radiometria/métodos , Física Médica/métodos , Software , Movimento , Imagens de Fantasmas , Radioisótopos , Método de Monte Carlo
5.
Phys Med Biol ; 68(11)2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37252715

RESUMO

Objective. Prompt x-ray imaging using a low-energy x-ray camera is a promising method for observing a proton beam's shape from outside the subject. Furthermore, imaging of positrons produced by nuclear reactions with protons is a possible method for observing the beam shape. However, it has not been possible to measure these two types of images with a single imaging system due to the limited imaging capability of existing systems. Imaging of both prompt x-rays and the distribution of positrons may compensate for the shortcomings of each method.Approach. We conducted imaging of the prompt x-ray using a pinhole x-ray camera during irradiation with protons in list mode. Then, after irradiation with protons, imaging of annihilation radiations from the produced positrons was conducted using the same pinhole x-ray camera in list mode. After this imaging, list-mode data were sorted to obtain prompt x-ray images and positron images.Main results. With the proposed procedure, we could measure both prompt x-ray images and induced positron images with a single irradiation by a proton beam. From the prompt x-ray images, ranges and widths of the proton beams could be estimated. The distributions of positrons were slightly wider than those of the prompt x-rays. From the time sequential positron images, we could derive the time activity curves of the produced positrons.Significance. Hybrid imaging of prompt x-rays and induced positrons using a pinhole x-ray camera was achieved. The proposed procedure would be useful for measuring prompt x-ray images during irradiation to estimate the beam structures as well as for measuring the induced positron images after irradiation to estimate the distributions and time activity curves of the induced positrons.


Assuntos
Terapia com Prótons , Prótons , Raios X , Elétrons , Câmaras gama , Terapia com Prótons/métodos , Imagens de Fantasmas , Raios gama , Imagem Multimodal , Método de Monte Carlo
6.
Molecules ; 28(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36770921

RESUMO

The present work reports the theoretical investigation of the scattering of electrons and positrons by the ethane (C2H6) molecule over the energy range 1 eV-1 MeV. The investigation was carried out by taking into account the screening correction arising from a semiclassical analysis of the atomic geometrical overlapping of the scattering observables calculated in the independent atom approximation. The study is presented through the calculations of a broad spectrum of observable quantities, namely differential, integrated elastic, momentum transfer, viscosity, inelastic, grand total, and total ionization cross-sections and the Sherman functions. A comparative study was carried out between scattering observables for electron impact with those for positron impact to exhibit the similarity and dissimilarity arising out of the difference of the collisions of impinging projectiles with the target. Partial-wave decomposition of the scattering states within the Dirac relativistic framework employing a free-atom complex optical model potential was used to calculate the corresponding observable quantities of the constituent atoms. The results, calculated using our recipe, were compared with the experimental and theoretical works available in the literature. The Sherman function for a e±-C2H6 scattering system is presented for the first time in the literature. The addition of the screening correction to the independent atom approximation method was found to substantially reduce the scattering cross-sections, particularly at forward angles for lower incident energies.

7.
Heliyon ; 9(2): e13169, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36747562

RESUMO

Objective: Genistein is an isoflavone molecule with a high affinity for estrogen receptors (ER), which could lead to the mechanism of selective estrogen receptor modulators (SERMs) in breast cancer. Genistein labeling with technetium-99m can be a new promising strategy for diagnostic breast cancer. In this research, we evaluate the physicochemical characteristics of the [99mTc]Tc-genistein complex and describe the optimal labeling method parameters. We also calculated density functional theory to study the stability constants to support complex formation analysis (DFT). Methods: The genistein was directly labeled with 99mTc, and its stability as well as its potential for usage as a radiotracer were all investigated. DFT calculations with thermodynamic cycles to determine chemical coordination models and calculate thermodynamic constants of complex more accurately. Results: The radiochemical purity of [99mTc]Tc-genistein showed a high yield of 93.25% ± 0.30% and had good physicochemical properties. The stability of the Tc(IV)-genistein complex was confirmed by DFT calculations at a value of 99.0822. Conclusions: As a result, [99mTc]Tc-genistein could be a potential radiotracer kit for SPECT imaging of breast cancer.

8.
Health Phys ; 124(4): 301-309, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36728190

RESUMO

ABSTRACT: The present work introduces an open-source graphical user interface (GUI) computer program called DynamicMC. The present program has the ability to generate ORNL phantom input script for the Monte Carlo N-Particle (MCNP) package. The relative dynamic movement of the radiation source with respect to the ORNL phantom can be modeled, which essentially resembles the dynamic movement of source-to-target (i.e., human phantom) distance in a 3-dimensional radiation field. The present program makes the organ-based dosimetry of the human body much easier, as users are not required to write lengthy scripts or deal with any programming that many may find tedious, time consuming, and error prone. In this paper, we have demonstrated that the present program can successfully model simple and complex relative dynamic movements (i.e., those involving rotation of source and human phantom in a 3-dimensional field). The present program would be useful for organ-based dosimetry and could also be used as a tool for teaching nuclear radiation physics and its interaction with the human body.


Assuntos
Radiometria , Software , Humanos , Radiometria/métodos , Imagens de Fantasmas , Método de Monte Carlo , Simulação por Computador
9.
Sci Rep ; 12(1): 18098, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302927

RESUMO

The present work introduced a framework to investigate the effectiveness of proton boron fusion therapy (PBFT) at the cellular level. The framework consisted of a cell array generator program coupled with PHITS Monte Carlo package with a dedicated terminal-based code editor that was developed in this work. The framework enabled users to model large cell arrays with normal, all boron, and random boron filled cytoplasm, to investigate the underlying mechanism of PBFT. It was found that alpha particles and neutrons could be produced in absence of boron mainly because of nuclear reaction induced by proton interaction with 16O, 12C and 14N nuclei. The effectiveness of PBFT is highly dependent on the incident proton energy, source size, cell array size, buffer medium thickness layer, concentration and distribution of boron in the cell array. To quantitatively assess the effectiveness of PBFT, of the total energy deposition by alpha particle for different cases were determined. The number of alpha particle hits in cell cytoplasm and nucleus for normal and 100 ppm boron were determined. The obtained results and the developed tools would be useful for future development of PBFT to objectively determine the effectiveness of this treatment modality.


Assuntos
Terapia por Captura de Nêutron de Boro , Terapia com Prótons , Boro , Terapia por Captura de Nêutron de Boro/métodos , Prótons , Nêutrons , Método de Monte Carlo
10.
Tomography ; 8(5): 2313-2329, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36136889

RESUMO

Proton irradiations are highly sensitive to spatial variations, mainly due to their high linear energy transfer (LET) and densely ionizing nature. In realistic clinical applications, the targets of ionizing radiation are inhomogeneous in terms of geometry and chemical composition (i.e., organs in the human body). One of the main methods for proton range monitoring is to utilize the production of proton induced positron emitting radionuclides; these could be measured precisely with positron emission tomography (PET) systems. One main positron emitting radionuclide that could be used for proton range monitoring and verification was found to be 13N that produces a peak close to the Bragg peak. In the present work, we have employed the Monte Carlo method and Spectral Analysis (SA) technique to investigate the feasibility of utilizing the 13N peak for proton range monitoring and verification in inhomogeneous targets. Two different phantom types, namely, (1) ordinary slab and (2) MIRD anthropomorphic phantoms, were used. We have found that the generated 13N peak in such highly inhomogeneous targets (ordinary slab and human phantom) is close to the actual Bragg peak, when irradiated by incident proton beam. The feasibility of using the SA technique to estimate the distribution of positron emitter was also investigated. The current findings and the developed tools in the present work would be helpful in proton range monitoring and verification in realistic clinical radiation therapy using proton beams.


Assuntos
Terapia com Prótons , Prótons , Estudos de Viabilidade , Humanos , Método de Monte Carlo , Tomografia por Emissão de Pósitrons/métodos , Terapia com Prótons/métodos
11.
PLoS One ; 17(5): e0267610, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35639785

RESUMO

The interaction of ionizing radiation with matter is a stochastic process and statistical analysis of such a process would be a crucial step in understanding radioactivity. Geiger-Müller (GM) counter is a widely used radiation detector used in nuclear radiation surveying, which produces counts upon exposure to a radioactive source. There are a variety of multi-purpose software that can be used to perform statistical analysis of measured counts from a GM counter. However, statistical analysis is a lengthy, error prone and time-consuming process, which gets more tedious when the number of measurements increases. In the present work, we have developed an open-source and easy-to-use graphical user interface (GUI) computer program named RadStat for statistical analysis of counts measured by a GM counter. RadStat has its own scripting syntaxes and bundled with gnuplot for quick visualization of output results. We believe the present open-source GUI program would be a useful tool for research and teaching of nuclear radiation physics.


Assuntos
Radiometria , Software , Projetos de Pesquisa , Processos Estocásticos
12.
J Radiat Res ; 63(3): 385-392, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35349714

RESUMO

The Monte Carlo (MC) method is a powerful tool for modeling nuclear radiation interaction with matter. A variety of MC software packages has been developed, especially for applications in radiation therapy. Most widely used MC packages require users to write their own input scripts for their systems, which can be a time consuming and error prone process and requires extensive user experience. In the present work, we have developed a graphical user interface (GUI) bundled with a custom-made 3D OpenGL visualizer for PHITS MC package. The current version focuses on modeling proton induced positron emitting radioisotopes, which in turn can be used for verification of proton ranges in proton therapy. The developed GUI program does not require extensive user experience. The present open-source program is distributed under GPLv3 license that allows users to freely download, modify, recompile and redistribute the program.


Assuntos
Terapia com Prótons , Elétrons , Método de Monte Carlo , Prótons , Radioisótopos , Software
13.
Neuroimage ; 250: 118965, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35122965

RESUMO

Localising accurate brain regions needs careful evaluation in each experimental species due to their individual variability. However, the function and connectivity of brain areas is commonly studied using a single-subject cranial landmark-based stereotactic atlas in animal neuroscience. Here, we address this issue in a small primate, the common marmoset, which is increasingly widely used in systems neuroscience. We developed a non-invasive multi-modal neuroimaging-based targeting pipeline, which accounts for intersubject anatomical variability in cranial and cortical landmarks in marmosets. This methodology allowed creation of multi-modal templates (MarmosetRIKEN20) including head CT and brain MR images, embedded in coordinate systems of anterior and posterior commissures (AC-PC) and CIFTI grayordinates. We found that the horizontal plane of the stereotactic coordinate was significantly rotated in pitch relative to the AC-PC coordinate system (10 degrees, frontal downwards), and had a significant bias and uncertainty due to positioning procedures. We also found that many common cranial and brain landmarks (e.g., bregma, intraparietal sulcus) vary in location across subjects and are substantial relative to average marmoset cortical area dimensions. Combining the neuroimaging-based targeting pipeline with robot-guided surgery enabled proof-of-concept targeting of deep brain structures with an accuracy of 0.2 mm. Altogether, our findings demonstrate substantial intersubject variability in marmoset brain and cranial landmarks, implying that subject-specific neuroimaging-based localization is needed for precision targeting in marmosets. The population-based templates and atlases in grayordinates, created for the first time in marmoset monkeys, should help bridging between macroscale and microscale analyses.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Callithrix/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Pontos de Referência Anatômicos , Animais , Encéfalo/cirurgia , Callithrix/cirurgia , Desenho de Equipamento , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/instrumentação , Reprodutibilidade dos Testes , Cirurgia Assistida por Computador , Tomografia Computadorizada por Raios X/instrumentação
14.
PLoS One ; 17(2): e0263521, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35167589

RESUMO

The Monte Carlo method is employed in this study to simulate the proton irradiation of a water-gel phantom. Positron-emitting radionuclides such as 11C, 15O, and 13N are scored using the Particle and Heavy Ion Transport Code System Monte Carlo code package. Previously, it was reported that as a result of 16O(p,2p2n)13N nuclear reaction, whose threshold energy is relatively low (5.660 MeV), a 13N peak is formed near the actual Bragg peak. Considering the generated 13N peak, we obtain offset distance values between the 13N peak and the actual Bragg peak for various incident proton energies ranging from 45 to 250 MeV, with an energy interval of 5 MeV. The offset distances fluctuate between 1.0 and 2.0 mm. For example, the offset distances between the 13N peak and the Bragg peak are 2.0, 2.0, and 1.0 mm for incident proton energies of 80, 160, and 240 MeV, respectively. These slight fluctuations for different incident proton energies are due to the relatively stable energy-dependent cross-section data for the 16O(p,2p2n)13N nuclear reaction. Hence, we develop an open-source computer program that performs linear and non-linear interpolations of offset distance data against the incident proton energy, which further reduces the energy interval from 5 to 0.1 MeV. In addition, we perform spectral analysis to reconstruct the 13N Bragg peak, and the results are consistent with those predicted from Monte Carlo computations. Hence, the results are used to generate three-dimensional scatter plots of the 13N radionuclide distribution in the modeled phantom. The obtained results and the developed methodologies will facilitate future investigations into proton range monitoring for therapeutic applications.


Assuntos
Radioisótopos de Nitrogênio/farmacologia , Terapia com Prótons/métodos , Algoritmos , Humanos , Método de Monte Carlo , Imagens de Fantasmas
15.
Ann Nucl Med ; 36(5): 479-487, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35199286

RESUMO

OBJECTIVE: Transarterial Radioembolization (TARE) with 90Y-loaded glass microspheres is a locoregional treatment option for Hepatocellular Carcinoma (HCC). Post-treatment 90Y bremsstrahlung imaging using Single-Photon Emission Tomography (SPECT) is currently a gold-standard imaging modality for quantifying the delivered dose. However, the nature of bremsstrahlung photons causes difficulty for dose estimation using SPECT imaging. This work aimed to investigate the possibility of using glass microspheres loaded with 90Y and Nanoparticles (NPs) to improve the quantification of delivered doses. METHODS: The Monte Carlo codes were used to simulate the post-TARE 90Y planar imaging. Planar images from bremsstrahlung photons and characteristic X-rays are acquired when 0, 1.2 mol/L, 2.4 mol/L, and 4.8 mol/L of Gold (Au), Hafnium (Hf), and Gadolinium (Gd) NPs are incorporated into the glass microspheres. We evaluated the quality of acquired images by calculating sensitivity and Signal-to-Background Ratio (SBR). Therapeutic effects of NPs were evaluated by calculation of Dose Enhancement Ratio (DER) in tumoral and non-tumoral liver tissues. RESULTS: The in silico results showed that the sensitivity values of bremsstrahlung and characteristic X-ray planar images increased significantly as the NPs concentration increased in the glass microspheres. The SBR values decreased as the NPs concentration increased for the bremsstrahlung planar images. In contrast, the SBR values increased for the characteristic X-ray planar images when Hf and Gd were incorporated into the glass microspheres. The DER values decreased in the tumoral and non-tumoral liver tissues as the NPs concentration increased. The maximum dose reduction was observed at the NPs concentration of 4.8 mol/L (≈ 7%). CONCLUSIONS: The incorporation of Au, Hf, and Gd NPs into the glass microspheres improved the quality and quantity of post-TARE planar images. Also, treatment efficiency was decreased significantly at NPs concentration > 4.8 mol/L.


Assuntos
Carcinoma Hepatocelular , Embolização Terapêutica , Neoplasias Hepáticas , Nanopartículas , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/radioterapia , Embolização Terapêutica/métodos , Vidro , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/radioterapia , Microesferas , Tomografia Computadorizada de Emissão de Fóton Único , Radioisótopos de Ítrio/uso terapêutico
16.
Ann Nucl Med ; 36(2): 133-143, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35029818

RESUMO

Artificial intelligence (AI) has been applied to various medical imaging tasks, such as computer-aided diagnosis. Specifically, deep learning techniques such as convolutional neural network (CNN) and generative adversarial network (GAN) have been extensively used for medical image generation. Image generation with deep learning has been investigated in studies using positron emission tomography (PET). This article reviews studies that applied deep learning techniques for image generation on PET. We categorized the studies for PET image generation with deep learning into three themes as follows: (1) recovering full PET data from noisy data by denoising with deep learning, (2) PET image reconstruction and attenuation correction with deep learning and (3) PET image translation and synthesis with deep learning. We introduce recent studies based on these three categories. Finally, we mention the limitations of applying deep learning techniques to PET image generation and future prospects for PET image generation.


Assuntos
Inteligência Artificial , Tomografia por Emissão de Pósitrons , Diagnóstico por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação
17.
Ann Nucl Med ; 36(2): 144-161, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35029817

RESUMO

Not only visual interpretation for lesion detection, staging, and characterization, but also quantitative treatment response assessment are key roles for 18F-FDG PET in oncology. In multicenter oncology PET studies, image quality standardization and SUV harmonization are essential to obtain reliable study outcomes. Standards for image quality and SUV harmonization range should be regularly updated according to progress in scanner performance. Accordingly, the first aim of this study was to propose new image quality reference levels to ensure small lesion detectability. The second aim was to propose a new SUV harmonization range and an image noise criterion to minimize the inter-scanner and intra-scanner SUV variabilities. We collected a total of 37 patterns of images from 23 recent PET/CT scanner models using the NEMA NU2 image quality phantom. PET images with various acquisition durations of 30-300 s and 1800 s were analyzed visually and quantitatively to derive visual detectability scores of the 10-mm-diameter hot sphere, noise-equivalent count (NECphantom), 10-mm sphere contrast (QH,10 mm), background variability (N10 mm), contrast-to-noise ratio (QH,10 mm/N10 mm), image noise level (CVBG), and SUVmax and SUVpeak for hot spheres (10-37 mm diameters). We calculated a reference level for each image quality metric, so that the 10-mm sphere can be visually detected. The SUV harmonization range and the image noise criterion were proposed with consideration of overshoot due to point-spread function (PSF) reconstruction. We proposed image quality reference levels as follows: QH,10 mm/N10 mm ≥ 2.5 and CVBG ≤ 14.1%. The 10th-90th percentiles in the SUV distributions were defined as the new SUV harmonization range. CVBG ≤ 10% was proposed as the image noise criterion, because the intra-scanner SUV variability significantly depended on CVBG. We proposed new image quality reference levels to ensure small lesion detectability. A new SUV harmonization range (in which PSF reconstruction is applicable) and the image noise criterion were also proposed for minimizing the SUV variabilities. Our proposed new standards will facilitate image quality standardization and SUV harmonization of multicenter oncology PET studies. The reliability of multicenter oncology PET studies will be improved by satisfying the new standards.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Tomografia por Emissão de Pósitrons/métodos , Padrões de Referência , Reprodutibilidade dos Testes
18.
Appl Radiat Isot ; 181: 110071, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34952332

RESUMO

PURPOSE: Small animal PET provides the biodistribution of administrated radiotracer in vivo and have a potential to contribute on dosimetry study. The aim of this study is to investigate the effect of region-of-interest (ROI)-delineation in whole-body rat PET image toward non-invasive estimation of human dosimetry of 18F-FDG. METHOD: After administration of 18F-FDG (averaged 11.7 MBq), 3.5-h PET and 20-min CT scans were sequentially performed for three rats by Clairvivo PET/CT system. Seven source organs, and the remainder of the body, were studied to extrapolate %ID(t) and estimate time-integrated activity coefficients [kBq-h/MBq] in human. The mean absorbed dose in each target organ and the effective dose were estimated by MIRD method. Effects of ROI-definitions on both extrapolated %ID(t) in human and estimated doses were also investigated by using (i) small ROIs of high uptake region and (ii) whole organ ROIs. RESULTS: Averaged effective doses of 18F-FDG in human by using high-uptake and whole-organ ROIs were 27.8 ± 6.54 and 19.3 ± 2.72 µSv/MBq, respectively. CONCLUSION: The use of small animal PET scanner, which allows repeatedly PET scans, have a potential to contribute on the reduction of the number of experimental animals. However, the ways of ROI drawing influences on the estimated effective dose and safe-side ROI definition may be preferred.


Assuntos
Fluordesoxiglucose F18/farmacocinética , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radiometria/métodos , Compostos Radiofarmacêuticos/farmacocinética , Animais , Masculino , Doses de Radiação , Ratos Wistar
19.
Antioxidants (Basel) ; 10(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34942979

RESUMO

Radioprotective effects of vitamin C and vitamin E as a water-soluble and a lipid-soluble agent, respectively, were investigated at the molecular level during the imposition of gamma radiation-induced structural changes to bovine serum albumin (BSA) at the therapeutic dose of 3 Gy. Secondary and tertiary structural changes of control and irradiated BSA samples were investigated using circular dichroism and fluorescence spectroscopy. The preirradiation tests showed nonspecific and reversible binding of vitamins C and E to BSA. Secondary and tertiary structures of irradiated BSA considerably changed in the absence of the vitamins. Upon irradiation, α-helices of BSA transitioned to beta motifs and random coils, and the fluorescence emission intensity decreased relative to nonirradiated BSA. In the presence of the vitamins C or E, however, the irradiated BSA was protected from these structural changes caused by reactive oxygen species (ROS). The two vitamins exhibited different patterns of attachment to the protein surface, as inspected by blind docking, and their mechanisms of protection were different. The hydrophilicity of vitamin C resulted in the predominant scavenging of ROS in the solvent, whereas hydrophobic vitamin E localized on the nonpolar patches of the BSA surface, where it did not only form a barrier for diffusing ROS but also encountered them as an antioxidant and neutralized them thanks to the moderate BSA binding constant. Very low concentrations of vitamins C or E (0.005 mg/mL) appear to be sufficient to prevent the oxidative damage of BSA.

20.
PLoS One ; 16(9): e0257638, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34534258

RESUMO

Some concepts in nuclear radiation physics are abstract and intellectually demanding. In the present paper, an "MCHP platform" (MCHP was an acronym for Monte Carlo simulations + Human Phantoms) was proposed to provide assistance to the students through visualization. The platform involved Monte Carlo simulations of interactions between ionizing radiations and the Oak Ridge National Laboratory (ORNL) adult male human phantom. As an example to demonstrate the benefits of the proposed MCHP platform, the present paper investigated the variation of the absorbed photon dose per photon from a 137Cs source in three selected organs, namely, brain, spine and thyroid of an adult male for concrete and lead shields with varying thicknesses. The results were interesting but not readily comprehensible without direct visualization. Graphical visualization snapshots as well as video clips of real time interactions between the photons and the human phantom were presented for the involved cases, and the results were explained with the help of such snapshots and video clips. It is envisaged that, if the platform is found useful and effective by the readers, the readers can also propose examples to be gradually added onto this platform in future, with the ultimate goal of enhancing students' understanding and learning the concepts in an undergraduate nuclear radiation physics course or a related course.


Assuntos
Método de Monte Carlo , Física Nuclear/educação , Proteção Radiológica/métodos , Encéfalo/efeitos da radiação , Radioisótopos de Césio/química , Corpo Humano , Humanos , Fótons , Proteção Radiológica/instrumentação , Radiação Ionizante , Radiometria , Estudantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA