RESUMO
Nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) are multi-domainal megasynthases. While they are capable of generating a structurally diverse array of metabolites of therapeutic relevance, their mere size and complex nature of their assembly (intermediates are tethered and enzyme bound) make them inherently difficult to characterize. In order to facilitate structural characterization of these metabolites, a thioester capture strategy that enables direct trapping and characterization of the thioester-bound enzyme intermediates was developed. Specifically, a synthetic Biotin-Cys agent was designed and utilized, enabling direct analysis by LCMS/MS and NMR spectroscopy. In the long term, the approach might facilitate the discovery of novel scaffolds from cryptic biosynthetic pathways, paving the way for the development of drug leads and therapeutic initiatives.
Assuntos
Policetídeos , Policetídeos/metabolismo , Policetídeo Sintases , Peptídeos/metabolismo , Espectrometria de Massas/métodos , Peptídeo Sintases/químicaRESUMO
Age-related macular degeneration (AMD) is a debilitating eye disease that tends to affect people over the age of 55. Lipofuscins are autofluorescent, toxic byproducts of the visual cycle thought to contribute toward the progression of the disease. Targeting the accumulation of lipofuscin through catabolism may serve as a method for the early treatment of AMD. Thus, an enzymatic approach capable of degrading lipofuscin, cycloretinal (all-trans retinal dimer), was examined. A peroxidase from the organism Marasmius scorodonius (MsP1) has shown capability of degrading this toxic metabolite into nontoxic byproducts. A catalytic triad within MsP1 (D228, H365, and R388) was identified through multiple-sequence alignment and homology modeling and confirmed by kinetic analysis. MsP1-associated cleavage products were detected by gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS), and liquid chromatography-tandem mass spectrometry (LC-MSMS). MsP1 degradation byproducts of cycloretinal show reduced cytotoxicity within cell culture (ARPE-19), demonstrating its potential as a gene therapeutic to alleviate the buildup of lipofuscin within AMD.
Assuntos
Lipofuscina , Degeneração Macular , Humanos , Cromatografia Líquida de Alta Pressão , Cinética , Lipofuscina/química , Degeneração Macular/metabolismo , PeroxidasesRESUMO
Nonribosomal peptide synthetase and polyketide synthase systems are home to complex enzymology and produce compounds of great therapeutic value. Despite this, they have continued to be difficult to characterize due to their substrates remaining enzyme-bound by a thioester bond. Here, we have developed a strategy to directly trap and characterize the thioester-bound enzyme intermediates and applied the strategy to the azinomycin biosynthetic pathway. The approach was initially applied in vitro to evaluate its efficacy and subsequently moved to an in situ system, where a protein of interest was isolated from the native organism to avoid needing to supply substrates. When the nonribosomal peptide synthetase AziA3 was isolated from Streptomyces sahachiroi, the capture strategy revealed AziA3 functions in the late stages of epoxide moiety formation of the azinomycins. The strategy was further validated in vitro with a nonribosomal peptide synthetase involved in colibactin biosynthesis. In the long term, this method will be utilized to characterize thioester-bound metabolites within not only the azinomycin biosynthetic pathway but also other cryptic metabolite pathways.
Assuntos
Compostos de Epóxi/metabolismo , Naftalenos/metabolismo , Peptídeo Sintases/metabolismo , Peptídeos/metabolismo , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Compostos de Sulfidrila/metabolismo , Proteínas de Bactérias , Vias Biossintéticas , Compostos de Epóxi/análise , Genes Bacterianos , Metabolômica , Naftalenos/análise , Peptídeo Sintases/genética , Peptídeos/análise , Policetídeo Sintases/genética , Policetídeos/análise , Streptomyces , Espectrometria de Massas em TandemRESUMO
Interstrand DNA crosslinks (ICLs) are a toxic form of DNA damage that block DNA replication and transcription by tethering the opposing strands of DNA. ICL repair requires unhooking of the tethered strands by either nuclease incision of the DNA backbone or glycosylase cleavage of the crosslinked nucleotide. In bacteria, glycosylase-mediated ICL unhooking was described in Streptomyces as a means of self-resistance to the genotoxic natural product azinomycin B. The mechanistic details and general utility of glycosylase-mediated ICL repair in other bacteria are unknown. Here, we identify the uncharacterized Escherichia coli protein YcaQ as an ICL repair glycosylase that protects cells against the toxicity of crosslinking agents. YcaQ unhooks both sides of symmetric and asymmetric ICLs in vitro, and loss or overexpression of ycaQ sensitizes E. coli to the nitrogen mustard mechlorethamine. Comparison of YcaQ and UvrA-mediated ICL resistance mechanisms establishes base excision as an alternate ICL repair pathway in bacteria.
Assuntos
Dano ao DNA , DNA Glicosilases/metabolismo , Reparo do DNA , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismoRESUMO
The biosynthesis of the azinomycins involves the conversion of glutamic acid to an aziridino[1,2-a]pyrrolidine moiety, which together with the epoxide moiety imparts anticancer activity to these agents. The mechanism of azabicycle formation is complex and involves at least 14 enzymatic steps. Previous research has identified N-acetyl-glutamate 5-semialdehyde as a key intermediate, which originates from protection of the amino terminus of glutamic acid and subsequent reduction of the γ-carboxylate. This study reports on the seminal discovery of a thiamin-dependent transketolase responsible for the formation of 2-acetamido-5,6-dihydroxy-6-oxoheptanoic acid, which accounts for the two-carbon extension needed to complete the carbon framework of the azabicycle moiety.
Assuntos
Compostos Azabicíclicos/química , Compostos Azabicíclicos/metabolismo , Transcetolase/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Transcetolase/químicaRESUMO
The azinomycins are a family of aziridine-containing antitumor antibiotics and represent a treasure trove of biosynthetic reactions. The formation of the azabicyclo[3.1.0]hexane ring and functionalization of this ring system remain the least understood aspects of the pathway. This study reports the incorporation of 18O-labeled molecular oxygen in azinomycin biosynthesis including both oxygens of the diol that ultimately adorn the aziridino[1,2- a]pyrrolidine moiety. Likewise, two other sites of heavy atom incorporation are observed.
Assuntos
Dipeptídeos/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Oxigênio/metabolismo , Streptomyces/metabolismo , Compostos Azabicíclicos , Cromatografia em Camada Fina , Peptídeos e Proteínas de Sinalização Intercelular/isolamento & purificação , Naftalenos/isolamento & purificação , Streptomyces/químicaRESUMO
Enzymes with a hydrophobic binding site and an active site lysine have been suggested to be promiscuous in their catalytic activity. ß-Lactoglobulin (BLG), the principle whey protein found in milk, possesses a central calyx that binds non-polar molecules. Here, we report that BLG can catalyze the retro-aldol cleavage of α,ß-unsaturated aldehydes making it a naturally occurring protein capable of catalyzing retro-aldol reactions on hydrophobic substrates. Retroaldolase activity was seen to be most effective on substrates with phenyl or naphthyl side-chains. Use of a brominated substrate analogue inhibitor increases the product yield by a factor of three. BLG's catalytic activity and its ready availability make it a prime candidate for the development of commercial biocatalysts.
Assuntos
Aldeídos/química , Alcenos/química , Carbono-Carbono Liases/química , Lactoglobulinas/química , Animais , Biocatálise , Carbono-Carbono Liases/antagonistas & inibidores , Bovinos , Ciclização/efeitos dos fármacos , Inibidores Enzimáticos/química , Interações Hidrofóbicas e Hidrofílicas , Lactoglobulinas/antagonistas & inibidores , Lisina/química , Enzimas Multifuncionais/antagonistas & inibidores , Enzimas Multifuncionais/químicaRESUMO
Lipofuscins are toxic autofluorescent byproducts of the visual cycle. The accumulation of lipofuscins such as cycloretinal in the retina is thought to play a role in the progression of age-related macular degeneration (AMD). Intriguingly, the milk protein ß-lactoglobulin (BLG) can promote the cyclodimerization of all-trans-retinal to cycloretinal both in vitro and in vivo. Here, site-directed mutagenesis of BLG and mass spectrometric analysis with substrate analogues demonstrate that lysine residues play a key role in catalysis. It is also shown that catalytic activity necessitates the presence of a physical binding site and cannot be mediated by a peptide chain. These studies provide insight into the mechanism of the cyclodimerization process and provide a model system for biocatalysis and biosynthesis of cycloretinal in vivo. In the long term, these studies may pave the way for drug development and inhibitor design as an early treatment regimen for AMD.
Assuntos
Lactoglobulinas/química , Lipofuscina/química , Mutação de Sentido Incorreto , Substituição de Aminoácidos , Catálise , Humanos , Lactoglobulinas/genética , Lactoglobulinas/metabolismo , Lipofuscina/genética , Lipofuscina/metabolismo , Degeneração Macular/metabolismo , Mutagênese Sítio-DirigidaRESUMO
The biosynthesis of the azabicyclic ring system of the azinomycin family of antitumor agents represents the "crown jewel" of the pathway and is a complex process involving at least 14 enzymatic steps. This study reports on the first biosynthetic step, the inroads, in the construction of the novel aziridino [1,2-a]pyrrolidine, azabicyclic core, allowing us to support a new mechanism for azabicycle formation.
Assuntos
Aldeído Oxirredutases/metabolismo , Aminoácido N-Acetiltransferase/metabolismo , Antineoplásicos Alquilantes/metabolismo , Compostos Azabicíclicos/metabolismo , Proteínas de Bactérias/metabolismo , Desenho de Fármacos , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Pirrolidinas/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Aldeído Oxirredutases/genética , Aminoácido N-Acetiltransferase/genética , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/farmacologia , Compostos Azabicíclicos/química , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias/genética , Biocatálise , Dipeptídeos/química , Dipeptídeos/metabolismo , Dipeptídeos/farmacologia , Técnicas de Inativação de Genes , Ácido Glutâmico/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Estrutura Molecular , Mutação , Naftalenos/química , Naftalenos/metabolismo , Naftalenos/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Pirrolidinas/química , Pirrolidinas/farmacologia , Proteínas Recombinantes/metabolismo , Streptomyces/enzimologia , Streptomyces/metabolismo , Especificidade por SubstratoRESUMO
The azinomycins are a family of potent antitumor agents with the ability to form interstrand cross-links with DNA. This study reports on the unusual biosynthetic formation of the 5-methyl naphthoate moiety, which is essential for effective DNA association. While sequence analysis predicts that the polyketide synthase (AziB) catalyzes the formation of this naphthoate, 2-methylbenzoic acid, a truncated single-ring product, is formed instead. We demonstrate that the thioesterase (AziG) acts as a chain elongation and cyclization (CEC) domain and is required for the additional two rounds of chain extension to form the expected product.
Assuntos
Proteínas de Bactérias/metabolismo , Glicopeptídeos/biossíntese , Policetídeo Sintases/metabolismo , Streptomyces/enzimologia , Antineoplásicos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Policetídeo Sintases/química , Policetídeo Sintases/genética , Estrutura Terciária de Proteína , Streptomyces/genéticaRESUMO
A new bioactive macrolactone, nuiapolide (1) was identified from a marine cyanobacterium collected off the coast of Niihau, near Lehua Rock. The natural product exhibits anti-chemotactic activity at concentrations as low as 1.3 µM against Jurkat cells, cancerous T lymphocytes, and induces a G2/M phase cell cycle shift. Structural characterization of the natural product revealed the compound to be a 40-membered macrolactone with nine hydroxyl functional groups and a rare tert-butyl carbinol residue.
Assuntos
Quimiotaxia/efeitos dos fármacos , Cianobactérias/química , Macrolídeos/farmacologia , Divisão Celular/efeitos dos fármacos , Inibição de Migração Celular/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Havaí , Humanos , Células Jurkat , Leucemia de Células T/tratamento farmacológico , Macrolídeos/química , Macrolídeos/isolamento & purificaçãoRESUMO
The azinomycins are potent antitumor agents produced by the soil bacterium Streptomyces sahachiroi and contain a novel aziridino[1,2-a]pyrrolidine core; its synthesis involves at least 14 steps. This study reports the first reconstitution of N-acetylglutamine semialdehyde formation by two enzymes encoded in the azinomycin biosynthetic gene cluster. The reaction proceeds through the formation of an acylphosphate and establishes N-acetyl-glutamyl 5-phosphate and N-acetylglutamine semialdehyde as intermediates in the complex biosynthesis of the aziridino[1,2-a]pyrrolidine moiety.
Assuntos
Vias Biossintéticas , Glutamatos/metabolismo , Antineoplásicos/metabolismo , Compostos Azabicíclicos , Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Domínio Catalítico , Dipeptídeos , Glicopeptídeos/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular , Cinética , Naftalenos/metabolismo , Peptídeos/metabolismo , Streptomyces/enzimologia , Streptomyces/genéticaRESUMO
At least 65% of all small molecule drugs on the market today are natural products, however, re-isolation of previously identified and characterized compounds has become a serious impediment to the discovery of new bioactive natural products. Here, genetic knockout of an unusual non-ribosomal peptide synthetase (NRPS) C-PCP-C module, aziA2, is performed resulting in the accumulation of the secondary metabolite, dimethyl furan-2,4-dicarboxylate. The cryptic metabolite represents the first non-azinomycin related compound to be isolated and characterized from the soil bacterium, S. sahachiroi. The results from this study suggest that abolishing production of otherwise predominant natural products through genetic knockout may constitute a means to "activate" the production of novel secondary metabolites that would otherwise lay dormant within microbial genome sequences.
RESUMO
A protein identified from the Streptomyces sahachiroi genome exhibits a protective effect against the DNA alkylator azinomycin B when heterologously expressed in S. lividans and E. coli. The protein, dubbed AziR for azinomycin resistance, is homologous to aminoglycoside phosphotransferases but behaves as an azinomycin binding protein and fails to chemically modify azinomycin. While AziR confers resistance to azinomycin B, it is inactive against aminoglycoside antibiotics and other DNA alkylators. A nucleic acid staining assay indicates that the protein enhances cell survival, and also prevents DNA damage effects normally observed following azinomycin treatment. Knowledge of an azinomycin resistance mechanism aids in setting the stage for future engineered biosynthesis of functionally useful azinomycin analogues.
Assuntos
Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Peptídeos/metabolismo , Peptídeos/farmacologia , Streptomyces/efeitos dos fármacos , Streptomyces/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Naftalenos/química , Naftalenos/metabolismo , Naftalenos/farmacologia , Peptídeos/química , Streptomyces/genéticaRESUMO
Only a handful of aziridine-containing natural products have been identified out of the more than 100,000 natural products characterized to date. Among this class of compounds, only the azinomycins (azinomycin A and B) and ficellomycin contain an unusual 1-azabicyclo[3.1.0]hexane ring system, which has been reported to be the reason for theDNAcrosslinking abilities and cytotoxicity of these metabolites. Both families of natural products are produced by Streptomyces species, Streptomyces sahachiroi and Streptomyces ficellus, respectively. Up until recently, much of the work on these molecules has focused on the synthesis of these natural products or their corresponding analogs for in vitro investigations evaluating their DNA selectivity. While one of the most intriguing aspects of these natural products is their biosynthesis, progress made in this area was largely impeded by difficulties with obtaining a reliable culture method and securing a consistent source of these natural products. In this review, we will cover the discovery and biological activity of the azinomycins, their mode of action, related synthetic analogs and biosynthesis, and finish with a discussion on the less studied metabolite, ficellomycin.
Assuntos
Produtos Biológicos , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Glicopeptídeos/metabolismo , Peptídeos/metabolismo , Compostos Azabicíclicos , Produtos Biológicos/biossíntese , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/química , DNA/efeitos dos fármacos , DNA/metabolismo , Dipeptídeos , Glicopeptídeos/química , Peptídeos e Proteínas de Sinalização Intercelular , Estrutura Molecular , Peptídeos/químicaRESUMO
Bovine milk is by far the most commonly consumed milk in the western world. The protein composition in milk consists of casein and whey proteins, of which ß-lactoglobulin (BLG) is the principal constituent of the latter. Here we provide biochemical evidence that this milk protein, in purified form and in pasteurized store-bought milk, promotes the formation of cycloretinal (all-trans retinal dimer), and a variety of other cycloterpenals of biological relevance [Fishkin et al., Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 7091-7096; Fishkin et al., Chirality, 2004, 16, 637-641; Kim et al., Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 19273-19278]. Cycloretinal is an eye metabolite and among several toxic byproducts of the visual cycle firmly established to cause age-related macular degeneration. Experiments in rabbits further demonstrate that BLG/milk can survive the digestive system and promote this reaction in vivo [Caillard et al., Am. J. Physiol., 1994, 266(6), G1053-G1059]. Proteomic studies on age-related macular degeneration patients have detected BLG in the eye of these patients further suggesting that this milk protein could contribute to disease progression [Crabb et al., Proc. Natl. Acad. Sci. U. S. A., 2002, 99(23), 14682-14687].
Assuntos
Lactoglobulinas/química , Leite/química , Retinaldeído/química , Animais , Bovinos , Humanos , Espectroscopia de Ressonância Magnética , CoelhosRESUMO
Experiments reveal that the metabolic precursor aminoacetone is a key intermediate in the production of the antitumor agent azinomycin A relative to the structurally and functionally related agent, azinomycin B. Azinomycin A and B arise through bifurcation of the biosynthetic pathway and competition between metabolic substrates. The availability of the biosynthetic precursors in vivo, aminoacetone for azinomycin A and threonine for azinomycin B, controls the overall ratio of azinomycin A to B produced.
Assuntos
Acetona/análogos & derivados , Antineoplásicos/síntese química , Glicopeptídeos/síntese química , Acetona/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos Azabicíclicos , Dipeptídeos , Glicopeptídeos/química , Glicopeptídeos/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular , Estrutura Molecular , Naftalenos , PeptídeosRESUMO
Streptomyces sahachiroi whole cell feeding experiments, utilizing putative precursors labeled with stable isotopes, established that the epoxide unit of the DNA cross-linked agents, azinomycin A and B, proceeds via a valine-dependent pathway and that hydroxylation and dehydration precedes formation of the terminal epoxide. Sodium 3-methyl-2-oxobutenoate, formed through a transimination reaction, was shown to be the penultimate precursor incorporated into the azinomycin epoxide.
Assuntos
Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Naftalenos/química , Naftalenos/metabolismo , Compostos Azabicíclicos , Dipeptídeos , Glicopeptídeos/química , Peptídeos e Proteínas de Sinalização Intercelular , Estrutura Molecular , Peptídeos/química , Fatores de TempoRESUMO
An unusual class of diterpenoid natural products, 'cycloterpenals' (with a central cyclohexadienal core), that arise in nature by condensation of retinoids and other isoprenes, have been isolated from a variety of organisms including marine sponges as well as from the human eye. A milk whey protein has also demonstrated the formation of a cycloterpenal derived from beta-ionylidineacetaldehyde. Here, we generate a synthetic library of these molecules where we detail reaction conditions required to effect cross condensation of alpha,beta-unsaturated aldehydes as opposed to homodimerization. The ability of this class of molecules to activate neurite outgrowth activity is reported.
Assuntos
Aldeídos/síntese química , Aldeídos/farmacologia , Cicloexenos/síntese química , Cicloexenos/farmacologia , Neuritos/efeitos dos fármacos , Aldeídos/química , Animais , Diferenciação Celular/efeitos dos fármacos , Cicloexenos/química , Humanos , Células Jurkat , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Células PC12 , Ratos , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
Traditional approaches to natural product discovery involve cell-based screening of natural product extracts followed by compound isolation and characterization. Their importance notwithstanding, continued mining leads to depletion of natural resources and the reisolation of previously identified metabolites. Metagenomic strategies aimed at localizing the biosynthetic cluster genes and expressing them in surrogate hosts offers one possible alternative. A fundamental question that naturally arises when pursuing such a strategy is, how large must the genomic library be to effectively represent the genome of an organism(s) and the biosynthetic gene clusters they harbor? Such an issue is certainly augmented in the absence of expensive robotics to expedite colony picking and/or screening of clones. We have developed an algorism, named BPC (biosynthetic pathway coverage), supported by molecular simulations to deduce the number of BAC clones required to achieve proper coverage of the genome and their respective biosynthetic pathways. The strategy has been applied to the construction of a large-insert BAC library from a marine microorganism, Hon6 (isolated from Honokohau, Maui) thought to represent a new species. The genomic library is constructed with a BAC yeast shuttle vector pClasper lacZ paving the way for the culturing of libraries in both prokaryotic and eukaryotic hosts. Flow cytometric methods are utilized to estimate the genome size of the organism and BPC implemented to assess P-coverage or percent coverage. A genetic selection strategy is illustrated, applications of which could expedite screening efforts in the identification and localization of biosynthetic pathways from marine microbial consortia, offering a powerful complement to genome sequencing and degenerate probe strategies. Implementing this approach, we report on the biotin biosynthetic pathway from the marine microorganism Hon6.