RESUMO
Pulmonary Mycobacterium avium-intracellulare complex (MAC) disease is a typical non-tuberculous mycobacterial infection. The incidence of pulmonary MAC is increasing worldwide. This study aimed to clarify the pharmacokinetic parameters of anti-pulmonary MAC disease drugs in silkworms. The pharmacokinetic parameters investigated included maximum concentration, area under the concentration-time curve, total clearance, and volume of distribution at steady-state. In addition, protein-binding rates, fat body transferability, and drug-drug interactions were examined. Antibiotic concentrations were measured using a validated high-performance liquid chromatography-mass spectrometry method. Among the antibiotics investigated, amikacin was not eliminated from silkworms during the 48-h observation period. In contrast, dose-proportional pharmacokinetics were observed in silkworms for all antibiotics tested, except for amikacin. Protein-binding rates in hemolymph for clarithromycin, azithromycin, rifampicin, ethambutol, and amikacin were 39.6 ± 3.0%, 39.5 ± 4.3%, 76.3 ± 3.2%, 20.9 ± 4.2%, and 73.1 ± 4.7%, respectively (mean ± standard deviation). The distribution of antibiotics in the fat bodies of silkworms was related to drug lipophilicity. No drug-drug interactions were observed in the silkworms. The pharmacokinetics of these drugs in silkworms differed significantly from those in humans. Therefore, while it is challenging to predict the pharmacokinetics of these drugs in humans based on silkworm data, the silkworm infection model has facilitated a comprehensive assessment of the relationship between antibiotic exposure and efficacy.
Assuntos
Amicacina , Antibacterianos , Bombyx , Complexo Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare , Animais , Bombyx/microbiologia , Bombyx/metabolismo , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Infecção por Mycobacterium avium-intracellulare/microbiologia , Antibacterianos/farmacocinética , Complexo Mycobacterium avium/efeitos dos fármacos , Amicacina/farmacocinética , Hemolinfa/metabolismo , Claritromicina/farmacocinética , Interações Medicamentosas , Etambutol/farmacocinética , Ligação Proteica , Rifampina/farmacocinética , Rifampina/farmacologiaRESUMO
BACKGROUND: Clofazimine (CFZ) has shown promising effects against Mycobacterium avium-intracellulare complex pulmonary disease (MAC-PD) and Mycobacterium abscessus species pulmonary disease (MABS-PD). However, the optimal CFZ dose remains unknown. We aimed to explore the relationship between steady-state CFZ concentration and its safety and efficacy in MAC-PD and MABS-PD. METHODS: This prospective observational study focused on patients with MAC-PD and MABS-PD treated with CFZ (UMIN 000041053). To understand the safety and efficacy profile of CFZ and elucidate its optimal concentration, we analyzed CFZ-induced pigmentation grade, QTc interval, and culture conversion outcomes in relation to serum CFZ concentration using Student's t-test, a concentration-QTc model, and multivariable logistic regression analysis, respectively. In total, 64 patients (34 with MAC-PD; 30 with MABS-PD) were included. RESULTS: The steady-state concentration of CFZ was higher in the moderate-to-severe pigmentation group than in the none-to-light pigmentation group (P < 0.001). At a CFZ concentration of 1 mg/L, the QTc interval was prolonged by 17.3 ms (95 % confidence interval [CI], 3.9-25.4) from baseline. Culture conversion was achieved in 33 (51.6 %) patients. The only significant predictor of culture conversion was surgery (adjusted odds ratio, 5.4; 95 % CI, 1.3-38.0). CFZ concentration and MIC of CFZ less than 0.25 mg/L were not associated with culture conversion in this study. CONCLUSION: CFZ-induced pigmentation and QT interval prolongation are associated with serum CFZ concentrations. CFZ dosage may be optimized by monitoring serum CFZ concentration.
Assuntos
Clofazimina , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Humanos , Clofazimina/administração & dosagem , Clofazimina/uso terapêutico , Feminino , Masculino , Estudos Prospectivos , Idoso , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Pessoa de Meia-Idade , Mycobacterium abscessus/efeitos dos fármacos , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Complexo Mycobacterium avium/efeitos dos fármacos , Resultado do Tratamento , Pneumopatias/tratamento farmacológico , Pneumopatias/microbiologia , Antibacterianos/efeitos adversos , Antibacterianos/uso terapêutico , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinéticaRESUMO
BACKGROUND: Although international nontuberculous mycobacterial pulmonary disease (NTM-PD) guidelines highlight symptom presence at diagnosis, the clinical characteristics of asymptomatic Mycobacterium avium complex pulmonary infection (MAC-PI) patients remain understudied. We clarified the clinical characteristics and course of asymptomatic MAC-PI patients. METHODS: We retrospectively analyzed 200 consecutive patients with MAC-PIs and adequate available data who newly met the microbiological and radiological criteria for NTM-PD at Fukujuji Hospital from January 2018 to June 2020. We compared the clinical characteristics and course of asymptomatic patients with symptomatic patients and evaluated factors influencing treatment initiation through multivariate analysis. RESULTS: 111 patients were symptomatic and 89 were asymptomatic at diagnosis. While the proportion was significantly lower than that in the symptomatic group (28.8 %), 15.7 % of asymptomatic group patients had cavitary lesions (P = 0.042). In the asymptomatic group, treatments were initiated in 38 (42.7 %) patients, and cavitary lesions, a positive acid-fast bacilli smear, and younger age were independent risk factors for treatment initiation. Among 22 (57.9 %) patients who experienced disease progression necessitating treatment during follow-up, 13 (34.2 %) displayed radiological progression without any worsening of symptoms. Agents used for treatment were consistent across the groups, with no significant differences in culture conversion, microbiological recurrence rates, or spontaneous culture conversion rates. CONCLUSION: Routine health checkups and radiological examinations can detect clinically important MAC-PIs even in the absence of symptoms. Considering that the clinical course of asymptomatic MAC-PI patients is largely similar to that of symptomatic patients, timely and appropriate management and intervention are essential for all MAC-PI patients.
Assuntos
Complexo Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare , Humanos , Masculino , Feminino , Infecção por Mycobacterium avium-intracellulare/diagnóstico por imagem , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Infecção por Mycobacterium avium-intracellulare/microbiologia , Infecção por Mycobacterium avium-intracellulare/diagnóstico , Estudos Retrospectivos , Idoso , Pessoa de Meia-Idade , Complexo Mycobacterium avium/isolamento & purificação , Progressão da Doença , Infecções Assintomáticas , Tomografia Computadorizada por Raios X/métodos , Idoso de 80 Anos ou mais , Fatores de Risco , Fatores EtáriosRESUMO
BACKGROUND AND OBJECTIVE: It remains unclear whether sepsis in patients with malignancy interferes with the predictive performance of the dose-estimation formulas. The quick sequential organ failure assessment (qSOFA) score can help identify patients with poor outcomes because of sepsis-associated organ damage. Vancomycin, an important antibiotic, treats systemic infections (sepsis) caused by methicillin-resistant Staphylococcus aureus. We aimed to clarify whether including the qSOFA score in a standard population pharmacokinetic (PopPK) assessment may improve the predictive performance of vancomycin doses in patients with malignancy. METHODS: This was a retrospective, observational study. Serum vancomycin concentration-time datasets were obtained from the therapeutic drug monitoring records of St. Luke's International Hospital (Tokyo, Japan) from January 2011 to August 2016. Clinical and laboratory data of the relevant patients were retrieved from electronic health records. PopPK analysis was performed using the NONMEM program, which includes creatinine clearance (CLCr), blood neutrophil counts, qSOFA scores, and type of malignancy as covariates. We examined the validity of the final PopPK model using bootstrapping, goodness-of-fit plots, and prediction-corrected visual predictive checks. RESULTS: Six hundred and eight blood samples were obtained from 325 patients. In the final PopPK model, the CLCr and qSOFA scores were selected as covariates of systemic vancomycin clearance (p < 0.05): the population mean value was 2.8 (L/h). Regardless of the CLCr, a qSOFA score of greater than 1 was associated with an approximately 10% reduction in vancomycin clearance. CONCLUSIONS: qSOFA scores might be an additional covariate to CLCr for estimating vancomycin concentrations with a PopPK model in patients with malignancy.
Assuntos
Neoplasias Hematológicas , Staphylococcus aureus Resistente à Meticilina , Sepse , Humanos , Vancomicina/farmacocinética , Escores de Disfunção Orgânica , Sepse/tratamento farmacológico , Estudos RetrospectivosRESUMO
Injectable hydrogels offer numerous advantages in various areas, which include tissue engineering and drug delivery because of their unique properties such as tunability, excellent carrier properties, and biocompatibility. These hydrogels can be administered with minimal invasiveness. In this study, we synthesized an injectable hydrogel by rehydrating lyophilized mixtures of guar adamantane (Guar-ADI) and poly-ß-cyclodextrin (p-ßCD) in a solution of phosphate-buffered saline (PBS) maintained at pH 7.4. The hydrogel was formed via host-guest interaction between modified guar (Guar-ADI), obtained by reacting guar gum with 1-adamantyl isocyanate (ADI) and p-ßCD. Comprehensive characterization of all synthesized materials, including the hydrogel, was performed using nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and rheology. The in vitro drug release study demonstrated the hydrogel's efficacy in controlled drug delivery, exemplified by the release of bovine serum albumin (BSA) and anastrozole, both of which followed first-order kinetics. Furthermore, the hydrogel displayed excellent biocompatibility and served as an ideal scaffold for promoting the growth of mouse osteoblastic MC3T3 cells as evidenced by the in vitro biocompatibility study.
RESUMO
BACKGROUND: Bacterial coinfections are observed in 19-66% of patients with Mycobacterium avium complex pulmonary disease (MAC-PD) during the entire duration of the disease. The impact of bacterial coinfection at diagnosis on the clinical course of MAC-PD has not been reported. METHODS: Among 558 patients diagnosed with MAC-PD between January 2016 and December 2020, 218 patients who underwent sputum culture tests twice or more within one year before and after diagnosis were included. We compared the patient characteristics and disease courses between the patients who had the same bacterial species detected twice or more (bacterial culture positive group: BCP group) and those who never had bacteria cultured (bacterial culture negative group: BCN group). RESULTS: We included 70 patients in the BCP group and 74 in the BCN group. The radiological findings showed that BCP at diagnosis correlated with a high modified Reiff score. During the median follow-up period of 42 months, the patients in the BCP group were more likely to accomplish spontaneous sputum conversion of MAC. The treatment initiation rate for MAC-PD in the BCP group was lower than that in the BCN group (41.4% vs. 67.6%, P = 0.003). In contrast, the time to the first bronchiectasis exacerbation in the BCP group was shorter than that in the BCN group, and the frequency of bronchiectasis exacerbations was higher in the BCP group. CONCLUSIONS: Patients with BCP at diagnosis are less likely to initiate treatment for MAC-PD and more likely to develop bronchiectasis exacerbation.
Assuntos
Bronquiectasia , Pneumopatias , Infecção por Mycobacterium avium-intracellulare , Humanos , Complexo Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare/complicações , Infecção por Mycobacterium avium-intracellulare/diagnóstico , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Pneumopatias/diagnóstico , Bronquiectasia/diagnóstico , PrognósticoRESUMO
Chalcogenide nanoparticles have become a very active field of research for their optoelectronic and biological properties. This article shows the production of tellurium dioxide nanoparticles (TeO2 NPs) by pulsed laser ablation in liquids. The produced nanoparticles were spherical with a diameter of around 70 nm. The energy band gap of those nanoparticles was determined to be around 5.2 eV. Moreover, TeO2 NPs displayed a dose-dependent antibacterial effect against antibiotic-resistant bacteria such as multidrug-resistant Escherichia coli (MDR E. coli) and methicillin-resistant Staphylococcus aureus (MR S. aureus). The "naked" nature of the nanoparticle surface helped to eradicate the antibiotic-resistant bacteria at a very low concentration, with IC50 values of â¼4.3 ± 0.9 and 3.7 ± 0.2 ppm for MDR E. coli and MR S. aureus, respectively, after just 8 h of culture. Further, the IC50 values of the naked TeO2 NPs against melanoma (skin cancer) and healthy fibroblasts were 1.6 ± 0.7 and 5.5 ± 0.2 ppm, respectively, for up to 72 h. Finally, to understand these optimal antibacterial and anticancer properties of the TeO2 NPs, the reactive oxygen species generated by the nanoparticles were measured. In summary, the present in vitro results demonstrate much promise for the presently prepared TeO2 NPs and they should be studied for a wide range of safe antibacterial and anticancer applications.
RESUMO
Clofazimine (CFZ) is used to treat pulmonary non-tuberculous mycobacterial (NTM) infection; however, its pharmacokinetics remain unexplored in patients with pulmonary NTM, and the relationship between CFZ serum concentration and adverse effects has not been investigated. The objectives of this study were to characterize the pharmacokinetics of CFZ in pulmonary NTM disease treatment and to investigate the relationship between the steady-state CFZ serum concentration and adverse effects. A prospective observational study was conducted on 45 patients with pulmonary NTM treated with CFZ (UMIN000041053). A maximum of five serum samples per patient were taken at the CFZ trough, and serum concentration was measured using high-performance liquid chromatography-mass spectrometry (HPLC-MS). The pharmacokinetics of CFZ were analyzed using a nonlinear mixed effect model. The relationships among steady-state CFZ serum concentration and adverse effects, pigmentation, and heart rate-corrected QT (QTc) interval were investigated. Twenty-six patients had M. avium or M. intracellulare infection and nineteen had M. abscessus infection. The primary CFZ dosage was 50 mg/day. The estimated apparent CFZ clearance, apparent volume of distribution, and half-life were 2.4 L/h, 2,960 L, and 36 days, respectively. The combined use of rifampicin and CFZ significantly reduced CFZ exposure by 22%. Although there was no relationship between CFZ serum concentration and pigmentation intensity, the QTc interval was significantly correlated with CFZ serum concentration. The estimation of accurate pharmacokinetics for CFZ required approximately 5 months of monitoring. The relationship between the serum concentration and specific adverse effects of CFZ confirmed that CFZ serum concentration was not associated with pigmentation but did affect the QTc interval.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Pneumopatias , Pneumonia , Clofazimina/efeitos adversos , Humanos , Micobactérias não Tuberculosas , Pneumonia/induzido quimicamenteRESUMO
In vivo, Cytophone has demonstrated the capability for the early diagnosis of cancer, infection, and cardiovascular disorders through photoacoustic detection of circulating disease markers directly in the bloodstream with an unprecedented 1,000-fold improvement in sensitivity. Nevertheless, a Cytophone with higher specificity and portability is urgently needed. Here, we introduce a novel Cytophone platform that integrates a miniature multispectral laser diode array, time-color coding, and high-speed time-resolved signal processing. Using two-color (808 nm/915 nm) laser diodes, we demonstrated spectral identification of white and red clots, melanoma cells, and hemozoin in malaria-infected erythrocytes against a blood background and artifacts. Data from a Plasmodium yoelii murine model and cultured human P. falciparum were verified in vitro with confocal photothermal and fluorescent microscopy. With these techniques, we detected infected cells within 4 h after invasion, which makes hemozoin promising as a spectrally selective marker at the earliest stages of malaria progression. Along with the findings from our previous application of Cytophone with conventional lasers for the diagnosis of melanoma, bacteremia, sickle anemia, thrombosis, stroke, and abnormal hemoglobin forms, this current finding suggests the potential for the development of a portable rainbow Cytophone with multispectral laser diodes for the identification of these and other diseases.
Assuntos
Malária , Melanoma , Plasmodium yoelii , Animais , Detecção Precoce de Câncer , Eritrócitos , Lasers Semicondutores , Malária/diagnóstico , Camundongos , Plasmodium falciparumRESUMO
Gold nanorods (AuNRs) have been proposed to promote stem cell differentiation in vitro and in vivo. In this study, we examined a particular type of AuNR in supporting the differentiation of rat fetal neural stem cells (NSCs) into oligodendrocytes (ODCs). AuNRs were synthesized according to the seed-mediated method resulting in nanorods with an aspect ratio of around 3 (~12 nm diameter, 36 nm length) and plasmon resonance at 520 and 780 nm, as confirmed by transmission electron microscopy (TEM) and UV-vis spectroscopy, respectively. A layer-by-layer approach was used to fabricate the AuNR substrate on the functionalized glass coverslips. NSCs were propagated for 10 days using fibroblast growth factor, platelet-derived growth-factor-supplemented culture media, and differentiated on an AuNR or poly-D-lysine (PDL)-coated surface using differentiation media containing triiodothyronine for three weeks. Results showed that NSCs survived better and differentiated faster on the AuNRs compared to the PDL surface. By week 1, almost all cells had differentiated on the AuNR substrate, whereas only ~60% differentiated on the PDL surface, with similar percentages of ODCs and astrocytes. This study indicates that functionalized AuNR substrate does promote NSC differentiation and could be a viable tool for tissue engineering to support the differentiation of stem cells.
RESUMO
Nanosized materials have been proposed for a wide range of biomedical applications, given their unique characteristics. However, how these nanomaterials interact with cells and tissues, as well as how they bio-distribute in organisms, is still under investigation. Differences such as the nanoparticle size, shape, and surface chemistry affect the basic mechanisms of cellular uptake and responses, which, in turn, affects the nanoparticles' applicability for biomedical applications. Thus, it is vital to determine how a specific nanoparticle interacts with cells of interest before extensive in vivo applications are performed. Here, we delineate the uptake mechanism and localization of gold nanorods in SKBR-3 and MCF-7 breast cancer cell lines. Our results show both differences and similarities in the nanorod-cell interactions of the two cell lines. We accurately quantified the cellular uptake of gold nanorods in SKBR-3 and MCF-7 using inductively coupled plasma mass spectrometry (ICP-MS). We found that both cell types use macropinocytosis to internalize bare nanorods that aggregate and associate with the cell membrane. In addition, we were able to qualitatively track and show intracellular nanoparticle localization using transmission electron microscopy. The results of this study will be invaluable for the successful development of novel and "smart" nanodrugs based on gold nano-structural delivery vehicles, which heavily depend on their complex interactions with single cells.
RESUMO
OBJECTIVES: Multidrug chemotherapy is recommended for treating pulmonary Mycobacterium avium and Mycobacterium intracellulare disease. Although ethambutol has been demonstrated to inhibit macrolide resistance, the ethambutol dosage is sometimes decreased due to concerns about optic neuropathy. We aimed to assess whether lower ethambutol doses impact treatment outcomes. METHODS: Patients treated over 12 months between 2016 and 2020 were collected retrospectively. Clinical outcomes, including negative culture conversion, microbiological cure, adverse events, resistance to macrolides, and recurrence, were compared according to daily ethambutol dosage. RESULTS: Among 146 patients, 42 were treated with ethambutol dosages over 12.5 mg/kg/day, and 104 were treated with lower dosages. Negative culture conversion was achieved for 125 patients, and 90 patients achieved microbiological cure. Recurrence was identified in 16 patients who achieved microbiological cure. No macrolide resistance was observed, and no significant difference was observed in the percentage of negative culture conversion (P = 1.00) or microbiological cure (P = 0.67) between the high- and low-dosage ethambutol groups. Sputum smear positivity was associated with a lower adjusted odds ratio (aOR) of negative culture conversion (aOR: 0.48, 95% CI: 0.29-0.80). A lower aOR of microbiological cure was independently associated with sputum smear positivity (aOR: 0.52, 95% CI: 0.37-0.74) and with the use of an intermittent regimen (aOR: 0.60, 95% CI: 0.41-0.87). Daily ethambutol dosage was not identified as a prognostic factor for any of the outcomes. Optic neuropathy was observed in 7.1% of the high-dose ethambutol group and 1.0% of the low-dosage ethambutol group (P = 0.07). CONCLUSION: An ethambutol dosage of 12.5 mg/kg/day or less in guideline-based chemotherapy may reduce optic neuropathy without worsening clinical outcomes.
Assuntos
Infecção por Mycobacterium avium-intracellulare , Doenças do Nervo Óptico , Antibacterianos/uso terapêutico , Antituberculosos/uso terapêutico , Quimioterapia Combinada , Etambutol/uso terapêutico , Humanos , Mycobacterium avium , Complexo Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Infecção por Mycobacterium avium-intracellulare/microbiologia , Doenças do Nervo Óptico/induzido quimicamente , Doenças do Nervo Óptico/tratamento farmacológico , Estudos Retrospectivos , Rifampina/uso terapêutico , Resultado do TratamentoRESUMO
Gold nanoparticles (AuNPs) hold great promise in nanomedicine, yet their successful clinical translation has not been realized. Some challenges include effective AuNP targeting and delivery to improve modulation of immune cells of interest while limiting potential adverse effects. In order to overcome these challenges, we must fully understand how AuNPs impact different immune cell subsets, particularly within the dendritic cell and T cell compartments. Herein, we show that polyethylene glycol coated (PEG) gold nanorods (AuNRs) and PEG AuNRs covered with a thin layer of silver (AuNR/Ag) may enhance the immune response towards immune suppression or activation. We also studied the ability to enhance CD4+ Foxp3+ Tregs in vitro using AuNRs functionalized with interleukin 2 (IL2), a cytokine that is important in Treg development and homeostasis. Our results indicate that AuNRs enhance different immune cells and that NP composition matters in immune targeting. This knowledge will help us understand how to better design AuNRs to target and enhance the immune system.
Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Ouro/farmacologia , Nanopartículas Metálicas/administração & dosagem , Nanotubos/química , Animais , Linfócitos T CD4-Positivos/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/metabolismo , Imunidade/efeitos dos fármacos , Interleucina-2/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Polietilenoglicóis/química , Prata/administração & dosagemRESUMO
Strategies to increase the proportion of neural stem cells that differentiate into neurons are vital for therapy of neurodegenerative disorders. In vitro, the extracellular matrix composition and topography have been found to be important factors in stem cell differentiation. We have developed a novel artificial extracellular matrix (aECM) formed by attaching gold nanocages (AuNCs) to glass coverslips. After culturing rat neural stem cells (rNSCs) on these gold nanocage-coated surfaces (AuNC-aECMs), we observed that 44.6% of rNSCs differentiated into neurons compared to only 27.9% for cells grown on laminin-coated glass coverslips. We applied laser irradiation to the AuNC-aECMs to introduce precise amounts of photothermally induced heat shock in cells. Our results showed that laser-induced thermal stimulation of AuNC-aECMs further enhanced neuronal differentiation (56%) depending on the laser intensity used. Response to these photothermal effects increased the expression of heat shock protein 27, 70, and 90α in rNSCs. Analysis of dendritic complexity showed that this thermal stimulation promoted neuronal maturation by increasing dendrite length as thermal dose was increased. In addition, we found that cells growing on AuNC-aECMs post laser irradiation exhibited action potentials and increased the expression of voltage-gated Na+ channels compared to laminin-coated glass coverslips. These results indicate that the photothermal response induced in cells growing on AuNC-aECMs can be used to produce large quantities of functional neurons, with improved electrochemical properties, that can potentially be transplanted into a damaged central nervous system to provide replacement neurons and restore lost function.
RESUMO
Bacterial biofilm has become one of the most frequent health problems as it contributes to persistent chronic infections. Therefore, it is vital to find alternatives to currently used bactericidal agents to prevent bacterial contamination on surfaces effectively and prevent the biofilms formation. Several metallic materials are well known for their antimicrobial activity; this includes copper, copper alloys, silver, gold, titanium, and zinc. On the other hand, some metals, such as aluminum, do not have noteworthy antimicrobial properties. In this study, we demonstrate that the antibacterial activity of household aluminum foil can be enhanced by nanostructuring the foil's surface by a simple hot water treatment (HWT) process. Cultures ofEscherichia coliandStaphylococcus aureuswere grown on nutrient agar while exposed to the samples of treated and untreated Al foils and left for 24 h. Our results indicate that treated Al foil can more effectively inhibit the bacteria growth compared to the regular untreated Al foil. This enhancement in antibacterial property might be due to a combination of chemical and morphological changes that the cell undergoes once it encounters nanofeatures of HWT-Al foil surface.
RESUMO
The use of synthetic materials for biomedical applications is ever expanding. One of the major requirements for these materials is biocompatibility, which includes prevention of immune system responses. Due to the inherent complexity of their structural composition, the polyurethane (PU) family of polymers is being used in a variety of medical applications, from soft and hard tissue scaffolds to intricate coatings on implantable devices. Herein, we investigated whether two polymer materials, D3 and D7, induced an immune response, measured by their effects on a dendritic cell (DC) line, JAWS II. Using a lactate dehydrogenase cytotoxicity assay and Annexin V/PI staining, we found that the PU materials did not induce cytotoxicity in DC cells. Using confocal microscopy, we also showed that the materials did not induce activation or maturation, as compared to positive controls. This was confirmed by looking at various markers, CD80, CD86, MHC class I, and MHC class II, via flow cytometry. Overall, the results indicated that the investigated PU films are biocompatible in terms of immunotoxicology and immunogenicity and show great promise for use in regenerative medicine.
Assuntos
Materiais Biocompatíveis , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Teste de Materiais/métodos , Poliuretanos/farmacologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Éteres , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas/toxicidade , Medicina Regenerativa , Engenharia Tecidual , Alicerces TeciduaisRESUMO
Bismuth oxide is an important bismuth compound having applications in electronics, photo-catalysis and medicine. At the nanoscale, bismuth oxide experiences a variety of new physico-chemical properties because of its increased surface to volume ratio leading to potentially new applications. In this manuscript, we report for the very first time the synthesis of bismuth oxide (Bi2O3) nano-flakes by pulsed laser ablation in liquids without any external assistance (no acoustic, electric field, or magnetic field). The synthesis was performed by irradiating, pure bismuth needles immerged in de-ionized water, at very high fluence â¼160 J cm-2 in order to be highly selective and only promote the growth of two-dimensional structures. The x- and y-dimensions of the flakes were around 1 µm in size while their thickness was 47.0 ± 12.7 nm as confirmed by AFM analysis. The flakes were confirmed to be α- and γ-Bi2O3 by SAED and Raman spectroscopy. By using this mixture of flakes, we demonstrated that the nanostructures can be used as antimicrobial agents, achieving a complete inhibition of Gram positive (MSRA) and Gram negative bacteria (MDR-EC) at low concentration, â¼50 ppm.
RESUMO
Vanadium pentoxide is the most important vanadium compound by being the precursor to most vanadium alloys. It also plays an essential role in the production of sulfuric acid as well as in metal-ion batteries and supercapacitors. In this paper, pulsed laser ablation in liquids is used to synthesize "naked" vanadium pentoxide nanostructures. The resulting particles take up "nearly-spherical" and "flower-like" morphologies, composed of α-V2O5 and ß-V2O5 crystalline phases. Even "naked", the nanostructures are stable in time with a zeta potential of -51 ± 7 mV. In order to maximize the production of vanadium pentoxide nanostructure, the optimal repetition rate was determined to be @ â¼6600 Hz when irradiating a pure vanadium target in DI-water. This corresponds to a cavitation bubble lifetime of around â¼0.15 ms. At that repetition rate, the production reached â¼10 ppm per minute of irradiation. Finally, from the characterization of the α-V2O5 and ß-V2O5 nanostructures, the surface energy of each phase has been carefully determined at 0.308 and 1.483 J cm-2, respectively. Consequently, the ß-phase was found to display a surface energy very close to platinum. The exciton Bohr radius has been determined at 3.5 ± 0.7 nm and 2.0 ± 0.6 nm for α-V2O5 and ß-V2O5 phases, respectively.
RESUMO
Plasmonic gap-enhanced Raman tags (GERTs) are new emerging nanoprobes that, based on their unique surface-enhanced Raman spectroscopy (SERS) signal, can play a major role in complex imaging and detection of biological systems. GERTs are generated from a metal core nanostructure and layered with one or more metal nanosized layers, encasing a Raman active molecule. The advantages of GERTs are enhanced surface plasmon and electromagnetic resonance, as well as inherent protection of the Raman active molecule from environmental deterioration that could reduce their spectroscopic signatures over time. In this study, we used in vitro three-dimensional (3D) spheroid cultures to demonstrate these advantages. 3D spheroids mimic the in vivo tumor microenvironment better than 2D culture, with abundant extracellular matrix and hypoxia inducing variability of pH and enzymatic reactions. Here, we report the use of GERTs in large pancreatic 3D spheroids (>500 µm in apparent diameter) for complex penetration visualization. Our combined imaging technique of enhanced darkfield microscopy and SERS was able to identify the presence and distribution of the GERTs within the 3D spheroid structure. The distribution of GERTs 2 hours after the nanorods' incubation indicated accumulation, generally in the outermost layer of the spheroids but also, more randomly, in non-uniform patterns in deep layers of the 3D spheroids. These observations bring into question the mechanism of uptake and flow of the nanoparticles in function of their incubation time while demonstrating the promising potential of our approach. Additionally, the SERS signal was still detectable after 24 hours of incubation of GERTs with the 3D culture, indicating the stability of the Raman signal.