Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Clin Biochem Nutr ; 73(3): 191-197, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37970556

RESUMO

Neuroblastomas are the most common extracranial solid tumors in children and have a unique feature of neuronal differentiation. Peroxisome proliferator-activated receptor (PPAR)-γ is reported to have neuroprotective effects in addition to having antitumor effects in various cancers. Thus, we aimed to clarify the role of PPAR-γ agonist and antagonist in malignant neuroblastomas, which also possess neuronal features. In MYCN-amplified neuroblastoma CHP212 cells, treatment with the PPAR-γ antagonist GW9662 induced growth inhibition in a dose-dependent manner. In addition, the PPAR-γ antagonist treatment changed cell morphology with increasing expression of the neuronal differentiation marker tubulin beta 3 (TUBB3) and induced G1 phase arrest and apoptosis in MYCN-amplified neuroblastoma. Notably, the PPAR-γ antagonist treatment significantly decreased expression of NMYC, B-cell lymphoma 2 (BCL2) and bromodomain-containing protein 4 (BRD4). It is implied that BRD4, NMYC, BCL2 suppression by the PPAR-γ antagonist resulted in cell growth inhibition, differentiation, and apoptosis induction. In our in vivo study, the PPAR-γ antagonist treatment induced CHP212 cells differentiation and resultant tumor growth inhibition. Our results provide a deeper understanding of the mechanisms of tumor cell differentiation and suggest that PPAR-γ antagonist is a new therapeutic and prevention option for neuroblastomas.

2.
Commun Biol ; 5(1): 564, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681048

RESUMO

Cyclins and cyclin-dependent kinases (CDKs) regulate the cell cycle, which is important for cell proliferation and development. Cyclins bind to and activate CDKs, which then drive the cell cycle. The expression of cyclins periodically changes throughout the cell cycle, while that of CDKs remains constant. To elucidate the mechanisms underlying the constant expression of CDKs, we search for compounds that alter their expression and discover that the natural product fucoxanthinol downregulates CDK2, 4, and 6 expression. We then develop a method to immobilize a compound with a hydroxyl group onto FG beads® and identify human ribosomal protein uS7 (also known as ribosomal protein S5) as the major fucoxanthinol-binding protein using the beads and mass spectrometry. The knockdown of uS7 induces G1 cell cycle arrest with the downregulation of CDK6 in colon cancer cells. CDK6, but not CDK2 or CDK4, is degraded by the depletion of uS7, and we furthermore find that uS7 directly binds to CDK6. Fucoxanthinol decreases uS7 at the protein level in colon cancer cells. By identifying the binding proteins of a natural product, the present study reveals that ribosomal protein uS7 may contribute to the constant expression of CDK6 via a direct interaction.


Assuntos
Produtos Biológicos , Neoplasias do Colo , Quinase 6 Dependente de Ciclina , Proteínas Ribossômicas , beta Caroteno , Produtos Biológicos/farmacologia , Quinase 2 Dependente de Ciclina , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina/genética , Ciclinas/metabolismo , Humanos , Proteínas Ribossômicas/genética , beta Caroteno/análogos & derivados , beta Caroteno/farmacologia
3.
Biomedicines ; 10(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35740377

RESUMO

Edible plant-derived nanovesicles have been explored as effective materials for preventing colorectal cancer (CRC) incidence, dependent on gene status, as a K-Ras-activating mutation via the macropinocytosis pathway. Approximately 70% of CRC harbors the p53 mutation, which is strongly associated with a poor prognosis for CRC. However, it has not been revealed whether p53 inactivation activates the macropinocytosis pathway or not. In this study, we investigated parental cells, wild-type or null for p53 treated with Citrus limon L.-derived nanovesicles, as potential materials for CRC prevention. Using ultracentrifugation, we obtained C. limon L.-derived nanovesicles, the diameters of which were approximately 100 nm, similar to that of the exosomes derived from mammalian cells. C. limon L.-derived nanovesicles showed inhibitory effects on cell growth in not p53-wild, but also in p53-inactivated CRC cells. Furthermore, we revealed that the macropinocytosis pathway is activated by p53 inactivation and C. limon L.-derived nanovesicles were up taken via the macropinocytosis pathway. Notably, although C. limon L.-derived nanovesicles contained citrate, the inhibitory effects of citrate were not dependent on the p53 status. We thus provide a novel mechanism for the growth inhibition of C. limon L.-derived nanovesicles via macropinocytosis and expect to develop a functional food product containing them for preventing p53-inactivation CRC incidence.

4.
J Clin Biochem Nutr ; 70(2): 93-102, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35400827

RESUMO

As colon cancer is one of the most common cancers in the world, practical prevention strategies for colon cancer are needed. Recently, treatment with aspirin and/or 5-aminosalicylic acid-related agents was reported to reduce the number of intestinal polyps in patients with familial adenomatous polyposis. To evaluate the mechanism of aspirin and 5-aminosalicylic acid for suppressing the colon polyp growth, single and combined effects of 5-aminosalicylic acid and sodium salicylate (metabolite of aspirin) were tested in the two human colon cancer cells with different cyclooxygenase-2 expression levels and intestinal polyp-derived cells from familial adenomatous polyposis model mouse. The combination induced cell-cycle arrest at the G1 phase along with inhibition of cell growth and colony-forming ability in these cells. The combination reduced cyclin D1 via proteasomal degradation and activated retinoblastoma protein. The combination inhibited the colony-forming ability of mouse colonic mucosa cells by about 50% and the colony-forming ability of mouse intestinal polyp-derived cells by about 90%. The expression level of cyclin D1 in colon mucosa cells was lower than that in intestinal polyp-derived cells. These results suggest that this combination may be more effective in inhibiting cell growth of intestinal polyps through cyclin D1 down-regulation.

5.
PNAS Nexus ; 1(2): pgac059, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-36713317

RESUMO

MEK inhibitors are among the most successful molecularly targeted agents used as cancer therapeutics. However, to treat cancer more efficiently, resistance to MEK inhibitor-induced cell death must be overcome. Although previous genetic approaches based on comprehensive gene expression analysis or RNAi libraries led to the discovery of factors involved in intrinsic resistance to MEK inhibitors, a feasible combined treatment with the MEK inhibitor has not yet been developed. Here, we show that a chemoproteoinformatics approach identifies ligands overcoming the resistance to cell death induced by MEK inhibition as well as the target molecule conferring this resistance. First, we used natural products, perillyl alcohol and sesaminol, which induced cell death in combination with the MEK inhibitor trametinib, as chemical probes, and identified ribosomal protein S5 (RPS5) as their common target protein. Consistently, trametinib induced cell death in RPS5-depleted cancer cells via upregulation of the apoptotic proteins BIM and PUMA. Using molecular docking and molecular dynamics (MD) simulations, we then screened FDA- and EMA-approved drugs for RPS5-binding ligands and found that acetylsalicylic acid (ASA, also known as aspirin) directly bound to RPS5, resulting in upregulation of BIM and PUMA and induction of cell death in combination with trametinib. Our chemoproteoinformatics approach demonstrates that RPS5 confers resistance to MEK inhibitor-induced cell death, and that aspirin could be repurposed to sensitize cells to MEK inhibition by binding to RPS5.

6.
Clin J Gastroenterol ; 14(6): 1667-1670, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34455522

RESUMO

A 28-year-old male visited hospital because his mother had been diagnosed with familial adenomatous polyposis (FAP) with a pathological variant of the APC gene. Total colonoscopy showed that he has more than 100 polyps distributed throughout the colorectum, and the APC gene variant was also detected. After he was diagnosed with FAP, he received information that surgery was currently the only way to prevent the development of colorectal cancer. However, he firmly declined to undergo surgical procedures and decided to have strict follow-up with frequent endoscopic polypectomy to prevent the development of colorectal cancer. At the first endoscopy, polypectomy was performed on 52 polyps. Histological analysis of the dissected polyps showed that they were all adenomas, but adenocarcinoma was not detected. The second endoscopic polypectomy was performed after 4 months later. We found a pale 20 mm wide flat, elevated type polyp in the ascending colon with an adherent mucus cap that was resistant to washing off. After endoscopic mucosal resection, histological analysis revealed that there were two lesions in the polyps, a sessile serrated lesion (SSL) and SSL with dysplasia. SSL is a high-risk lesion for colorectal cancer, but it was reported to be rare in patients with FAP, and the existence of SSL suggested another carcinogenesis pathway in patients with FAP in addition to the adenoma-carcinoma sequence. Our report may be significant not only in consideration of the pathogenesis of FAP but also useful to raise awareness of SSL for clinicians who perform endoscopic polypectomy to prevent the development of colorectal cancer in patients with FAP.


Assuntos
Adenoma , Polipose Adenomatosa do Colo , Pólipos do Colo , Neoplasias Colorretais , Adenoma/cirurgia , Polipose Adenomatosa do Colo/complicações , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/cirurgia , Adulto , Pólipos do Colo/cirurgia , Colonoscopia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/cirurgia , Genes APC , Humanos , Masculino
8.
Cancers (Basel) ; 13(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652782

RESUMO

Natural products have numerous bioactivities and are expected to be a resource for potent drugs. However, their direct targets in cells often remain unclear. We found that rabdosianone I, which is a bitter diterpene from an oriental herb for longevity, Isodon japonicus Hara, markedly inhibited the growth of human colorectal cancer cells by downregulating the expression of thymidylate synthase (TS). Next, using rabdosianone I-immobilized nano-magnetic beads, we identified two mitochondrial inner membrane proteins, adenine nucleotide translocase 2 (ANT2) and prohibitin 2 (PHB2), as direct targets of rabdosianone I. Consistent with the action of rabdosianone I, the depletion of ANT2 or PHB2 reduced TS expression in a different manner. The knockdown of ANT2 or PHB2 promoted proteasomal degradation of TS protein, whereas that of not ANT2 but PHB2 reduced TS mRNA levels. Thus, our study reveals the ANT2- and PHB2-mediated pleiotropic regulation of TS expression and demonstrates the possibility of rabdosianone I as a lead compound of TS suppressor.

9.
Cancers (Basel) ; 12(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365457

RESUMO

Aspirin is one of the most promising over-the-counter drugs to repurpose for cancer treatment. In particular, aspirin has been reported to be effective against PIK3CA-mutated colorectal cancer (CRC); however, little information is available on how the PIK3CA gene status affects its efficacy. We found that the growth inhibitory effects of aspirin were impaired upon glutamine deprivation in PIK3CA-mutated CRC cells. Notably, glutamine dependency of aspirin-mediated growth inhibition was observed in PIK3CA-mutated cells but not PIK3CA wild type cells. Mechanistically, aspirin induced G1 arrest in PIK3CA-mutated CRC cells and inhibited the mTOR pathway, inducing the same phenotypes as glutamine deprivation. Moreover, our study including bioinformatic approaches revealed that aspirin increased the expression levels of glutaminolysis-related genes with upregulation of activating transcription factor 4 (ATF4) in PIK3CA-mutated CRC cells. Lastly, the agents targeting glutaminolysis demonstrated significant combined effects with aspirin on PIK3CA-mutated CRC cells. Thus, these findings not only suggest the correlation among aspirin efficacy, PIK3CA mutation and glutamine metabolism, but also the rational combinatorial treatments of aspirin with glutaminolysis-targeting agents against PIK3CA-mutated CRC.

10.
Cancers (Basel) ; 12(4)2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235498

RESUMO

As histone deacetylase inhibitors (HDACIs) have limited efficacy against solid tumors, we investigated whether and how oxidative stress is involved in sensitivity to HDACIs to develop a novel therapeutic option of HDACIs treatment. We first tested whether a reduction of the antioxidant glutathione (GSH) by glutamine deprivation affects sensitivity to a commercially available HDACI vorinostat and reactive oxygen species (ROS) accumulation. Next we investigated the relationship between a glutamate-cystine transporter xCT and the efficacy of vorinostat using siRNA of xCT and bioinformatic analyses. Finally, we verified the combinatory effects of vorinostat and the xCT inhibitor salazosulfapyridine (SASP) on ROS accumulation, cell death induction, and colony formation. Glutamine deprivation increased vorinostat-mediated cell death with ROS accumulation. Genetic ablation of xCT improved the efficacy of vorinostat, consistent with the results of public data analyses demonstrating that xCT expressions positively correlate with insensitivity to HDACIs in many types of cancer cell lines. Vorinostat caused ROS accumulation when combined with SASP, possibly resulting in synergistic ferroptosis. Our study provides a novel mechanistic insight into the mechanism underlying sensitivity to HDACIs involving xCT, suggesting xCT to be a promising predictive marker of HDACIs and rationalizing combinatory therapy of HDACIs with xCT inhibitors to induce ferroptosis.

11.
Int J Oncol ; 56(3): 848-856, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32124968

RESUMO

Squamous cell lung carcinoma (SQCLC) is an aggressive type of lung cancer. In contrast with the marked advances that have been achieved in the treatment of lung adenocarcinoma, there are currently no effective targeted therapies for SQCLC, for with cytotoxic drugs are still the main treatment strategy. Therefore, the present study aimed to develop novel combination therapies for SQCLC. The results demonstrated that a combined treatment with the potent histone deacetylase (HDAC) inhibitor OBP­801 and the third­generation anthracycline amrubicin synergistically inhibited the viability of SQCLC cell lines by inducing apoptosis signal­regulating kinase 1 (ASK1)­dependent, as well as JNK­ and p38 mitogen­activated protein kinase (MAPK)­independent apoptosis. OBP­801 treatment strongly induced the protein expression levels of thioredoxin­interacting protein (TXNIP), and amrubicin treatment increased the levels of intracellular reactive oxygen species (ROS), which suggested that this combination oxidized and dissociated thioredoxin 2 (Trx2) from mitochondrial ASK1 and activated ASK1. Moreover, mouse xenograft experiments using human H520 SQCLC cells revealed that the co­treatment potently suppressed tumor growth in vivo. These results suggested that a combined treatment with OBP­801 and amrubicin may have potential as a therapeutic strategy for SQCLC.


Assuntos
Antraciclinas/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Histona Desacetilases/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , MAP Quinase Quinase Quinase 5/metabolismo , Peptídeos Cíclicos/administração & dosagem , Animais , Antraciclinas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos , Peptídeos Cíclicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Int Clin Psychopharmacol ; 34(3): 124-130, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30870237

RESUMO

High-dose antipsychotic(s) can induce dopamine supersensitivity psychosis in schizophrenia patients. The precise relationship between a drug's blood concentration and the occurrence of dopamine supersensitivity psychosis has not been established. We divided 36 patients with schizophrenia who had undergone treatment mainly with risperidone into two groups: one with normal metabolizing activity of CYP2D6 (n = 15), and the other with lower activity of its variant, CYP2D6*10 (n = 21). The patients' blood concentrations of risperidone and 9-OH-risperidone were measured, and we compared the occurrence of dopamine supersensitivity psychosis episodes between the groups. There was no significant difference in any concentration of risperidone, 9-OH-risperidone, or active moiety between the groups although the with-CYP2D6*10 group had greater variabilities of these parameters compared to the without-CYP2D6*10 group. There was a lower rate of dopamine supersensitivity psychosis episodes in the without-CYP2D6*10 group (4/15, 26.7%) compared to the with-CYP2D6*10 group (11/21, 52.4%), but the difference was not significant. Although our findings were negative, largely because of the small sample size, these results suggest that (1) patients with an impaired functional allele of CYP2D6 may have higher concentrations of risperidone and its active metabolite and that (2) these patients may experience more frequent dopamine supersensitivity psychosis episodes.


Assuntos
Citocromo P-450 CYP2D6/metabolismo , Dopamina/fisiologia , Psicoses Induzidas por Substâncias/tratamento farmacológico , Risperidona/metabolismo , Esquizofrenia/tratamento farmacológico , Alelos , Antipsicóticos/uso terapêutico , Citocromo P-450 CYP2D6/genética , Genótipo , Humanos , Palmitato de Paliperidona/sangue , Escalas de Graduação Psiquiátrica , Transtornos Psicóticos/tratamento farmacológico , Risperidona/sangue , Risperidona/uso terapêutico , Esquizofrenia/genética
13.
Biochem Biophys Res Commun ; 505(4): 1203-1210, 2018 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30327144

RESUMO

Sulindac sulfone is a metabolite of sulindac, a non-steroidal anti-inflammatory drug (NSAID), without anti-inflammatory ability. However, sulindac sulfone has been reported to significantly reduce polyps in patients with colorectal adenomatous polyposis in clinical trials. Thus, sulindac sulfone is expected to be useful for the chemoprevention of neoplasia with few side effects related to anti-inflammatory ability. To date, the molecular targets of sulindac sulfone have not yet fully investigated. Therefore, in order to newly identify sulindac sulfone-binding proteins, we generated sulindac sulfone-fixed FG beads and purified sulindac sulfone-binding proteins from human colon cancer HT-29 cells. we identified mitochondrial outer membrane proteins voltage-dependent anion channel (VDAC) 1 and VDAC2 as novel molecular targets of sulindac sulfone, and sulindac sulfone directly bound to both VDAC1 and VDAC2. Double knockdown of VDAC1 and VDAC2 by siRNA inhibited growth and arrested the cell cycle at G1 phase in HT-29 cells. Depletion of VDAC1 and VDAC2 also inhibited the mTORC1 pathway with a reduction in cyclin D1. Interestingly, these effects were consistent with those of sulindac sulfone against human colon cancer cells, suggesting that sulindac sulfone negatively regulates the function of VDAC1 and VDAC2. In the present study, our data suggested that VDAC1 and VDAC2 are direct targets of sulindac sulfone which suppresses the mTORC1 pathway and induces G1 arrest.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos/farmacologia , Neoplasias do Colo/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Sulindaco/análogos & derivados , Canal de Ânion 1 Dependente de Voltagem/antagonistas & inibidores , Canal de Ânion 2 Dependente de Voltagem/antagonistas & inibidores , Trifosfato de Adenosina/biossíntese , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Pontos de Checagem do Ciclo Celular , Neoplasias do Colo/patologia , Células HT29 , Humanos , Sulindaco/química , Sulindaco/metabolismo , Sulindaco/farmacologia , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 2 Dependente de Voltagem/metabolismo
14.
Cancer Lett ; 431: 182-189, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29778569

RESUMO

Renal cell carcinoma (RCC) is the most common malignancy of kidney and remains largely intractable once it recurs after resection. mTOR inhibitors have been one of the mainstays used against recurrent RCC; however, there has been a major problem of the resistance to mTOR inhibitors, and thus new combination treatments with mTOR inhibitors are required. We here retrospectively showed that regular use of antilipidemic drug statins could provide a longer progression free survival (PFS) in RCC patients prescribed with an mTOR inhibitor everolimus than without statins (median PFS, 7.5 months vs. 3.2 months, respectively; hazard ratio, 0.52; 95% CI, 0.22-1.11). In order to give a rationale for this finding, we used RCC cell lines and showed the combinatorial effects of an mTOR inhibitor with statins induced a robust activation of retinoblastoma protein, whose mechanisms were involved in statins-mediated hindrance of KRAS or Rac1 protein prenylation. Finally, statins treatment also enhanced the efficacy of an mTOR inhibitor in RCC xenograft models. Thus, we provide molecular and (pre)clinical data showing that statins use could be a drug repositioning for RCC patients to enhance the efficacy of mTOR inhibitors.


Assuntos
Carcinoma de Células Renais/tratamento farmacológico , Inibidores Enzimáticos/uso terapêutico , Everolimo/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Ácido Mevalônico/metabolismo , Proteínas de Ligação a Retinoblastoma/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Neoplasias Renais/genética , Camundongos , Camundongos SCID , Prenilação , Intervalo Livre de Progressão , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a Retinoblastoma/genética , Estudos Retrospectivos , Resultado do Tratamento , Ubiquitina-Proteína Ligases/genética
15.
Oncotarget ; 9(28): 19597-19612, 2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29731968

RESUMO

With increasing clinical demands for MEK inhibitors in cancer treatment, overcoming the resistance to MEK inhibitors is an urgent problem to be solved. Numerous reports have shown that MEK inhibition results in the activation of PI3K-Akt signaling, which may confer apoptotic resistance to MEK inhibitors. We here demonstrate that the blockade of the mevalonate pathway using the antilipidemic drug statins represses Akt activation following MEK inhibition and induces significant apoptosis when co-treated with CH5126766 or trametinib. These events were clearly negated by the addition of mevalonate or geranylgeranyl pyrophosphate, indicating that the protein geranylgeranylation is implicated in the apoptotic resistance to MEK inhibitors. Furthermore, mechanistically, the combined treatment of CH5126766 with statins upregulated TNF-related apoptosis-inducing ligand (TRAIL), which was dependent on inhibition of the mevalonate pathway and is involved in apoptosis induction in human breast cancer MDA-MB-231 cells. The present study not only revealed that the mevalonate pathway could be targetable to enhance the efficacy of MEK inhibitors, but also proposes that combinatorial treatment of MEK inhibitors with statins may be a promising therapeutic strategy to sensitize cancer cells to apoptosis.

16.
Breast Cancer Res Treat ; 171(1): 43-52, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29752686

RESUMO

PURPOSE: Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Eribulin was approved for the treatment of metastatic breast cancer through the EMBRACE trial, and a subgroup analysis in this clinical trial indicated the efficacy of eribulin in patients with TNBC. However, the prognosis of patients with TNBC is still poor due to various molecular characteristics. Therefore, there is an urgent need for a more effective treatment for the management of TNBC. METHODS: We investigated the synergistic effect of a novel histone deacetylase (HDAC) inhibitor, OBP-801, and eribulin in TNBC cell lines because OBP-801 has been known to enhance the anti-tumor activities of other chemotherapeutic agents. The cell growth was analyzed, and the flow cytometry analysis was conducted to evaluate the effects on cell cycle and the induction of apoptosis. The mechanism underlying the enhancement of inhibition of TNBC cell growth was investigated through Western blot analyses. RESULTS: The combination treatment of OBP-801 with eribulin showed the synergistic inhibition of the growth in TNBC cells, involved with the enhancement of apoptosis. We, for the first time, found that eribulin upregulated survivin and also that OBP-801 could remarkably suppress the upregulation of survivin by eribulin. Moreover, this combination potently suppressed Bcl-xL and the MAPK pathway compared with either agent alone. CONCLUSION: We found that the combination of OBP-801 and eribulin synergistically inhibited the growth with apoptosis in TNBC cells, suggesting that this combination might be a promising novel strategy for treating TNBC patients.


Assuntos
Furanos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Cetonas/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Peptídeos Cíclicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Survivina/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Proteína bcl-X/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Proteínas Quinases Ativadas por Mitógeno/genética , Survivina/genética , Neoplasias de Mama Triplo Negativas/genética , Proteína bcl-X/genética
17.
Oncol Res ; 25(8): 1245-1252, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28117030

RESUMO

Ovarian cancer is the most lethal disease among gynecological malignancies. More effective therapy is required to counter high recurrence rates and chemotherapy resistance. We investigated the efficacy and molecular mechanisms of three combined treatments (TCTs)-a novel histone deacetylase (HDAC) inhibitor OBP-801/YM753, 5-fluorouracil (5-FU), and paclitaxel (PTX)-in human ovarian cancer SKOV-3 and OVCAR-3 cells. The inhibition of cell growth was stronger with TCTs than with each single agent and with two combined treatments. The TCTs significantly induce G2 phase arrest in both cell lines. We then analyzed the molecular mechanisms and found that the TCTs increased the phosphorylation of p38 (Thr180/Tyr182), decreased the expression of CDC25C, and increased the phosphorylation of CDC2 (Tyr15), an inactive form of CDC2. To examine the responsibilities of the p38 pathway for G2 phase arrest induced by the TCTs, we employed the p38 inhibitor SB203580. SB203580 inhibited G2 phase arrest, suppression of CDC25C, and phosphorylation of CDC2 (Tyr15) induced by the TCTs. These results suggest that the TCTs can induce G2 phase arrest through activation of the p38 signaling pathway. We therefore believe that this combination is promising as a novel therapeutic strategy against ovarian cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Feminino , Fluoruracila/administração & dosagem , Fase G2/efeitos dos fármacos , Humanos , Neoplasias Ovarianas/enzimologia , Neoplasias Ovarianas/patologia , Paclitaxel/administração & dosagem , Peptídeos Cíclicos/administração & dosagem
18.
Asian J Psychiatr ; 24: 28-32, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27931902

RESUMO

OBJECTIVE: Dopamine supersensitivity psychosis (DSP) is one of the key factors contributing to the development of antipsychotic treatment-resistant schizophrenia (TRS). We investigated the efficacy of blonanserin, an atypical antipsychotic, for patients with TRS and DSP. METHODS: In this 12-month retrospective follow-up study, we investigated the cases of eight consecutive patients with unstable TRS and DSP treated with blonanserin as an add-on therapy. We examined changes in scores for the Brief Psychiatric Rating Scale (BPRS), Clinical Global Impression-Severity of Illness (CGI-S) scale and the Global Assessment of Functioning scale (GAF) during the 12 months after the administration of blonanserin. RESULTS: The patients' total scores on the BPRS and GAF scores were significantly improved by 3 months at the latest. Positive BPRS and CGI-S scores were also improved by 6 months at the latest. The total chlorpromazine-equivalent doses of antipsychotics were significantly reduced from 1462.3±499.6mg to 794.1±642.8mg (p=0.001) after 12 months of blonanserin treatment, with a favorable safety and tolerability profile. CONCLUSIONS: Blonanserin may be a promising antipsychotic for the treatment of TRS and DSP.


Assuntos
Antipsicóticos/farmacologia , Avaliação de Resultados em Cuidados de Saúde , Piperazinas/farmacologia , Piperidinas/farmacologia , Esquizofrenia/tratamento farmacológico , Adulto , Antipsicóticos/administração & dosagem , Escalas de Graduação Psiquiátrica Breve , Dopamina/efeitos adversos , Resistência a Medicamentos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Piperazinas/administração & dosagem , Piperidinas/administração & dosagem , Escalas de Graduação Psiquiátrica , Estudos Retrospectivos
19.
Int J Oncol ; 48(3): 1297-304, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26783196

RESUMO

Irinotecan has been used in the first-line treatment of metastatic colorectal cancer. However, no clear predictive marker of irinotecan efficacy has been identified. It is controversial whether the response to irinotecan could be predicted by the expression level of topoisomerase-I, a direct target of irinotecan. The present study aimed to identify a feasible predictive marker of irinotecan efficacy. We hypothesized that the efficacy of SN38 (an active metabolite of irinotecan) is related to the cell proliferation and the phosphorylation status of RB in colorectal cancer cells. Indeed, the IC50 of SN38 was positively correlated with the doubling time of each cell line (R2=0.9315). Moreover, the phosphorylation level of RB was related to SN38 sensitivity. Consistent with the in vitro data, colorectal cancer tissues of irinotecan responders showed a significantly higher rate of phosphorylated RB (serine 780) expression using immunohistochemistry (P=0.0006), although a generally used proliferative marker, Ki-67, showed no significance. Finally, we investigated whether the phosphorylation of RB plays a crucial role in the efficacy of irinotecan. To suppress the expression of phosphorylated RB, we performed the knockdown of CDKs, which are known to phosphorylate RB. Intriguingly, the knockdown of both CDK4 and CDK6, but not CDK2, allowed RB to become the most hypophosphorylated form and converted the SN38-sensitive cells to a resistant state. Taking together the above findings from in vitro and clinical research, the immunohistochemistry of phosphorylated RB protein might be feasible to predict the irinotecan efficacy of colorectal cancer in clinical practice.


Assuntos
Camptotecina/análogos & derivados , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Proteína do Retinoblastoma/metabolismo , Adulto , Idoso , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Camptotecina/química , Camptotecina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Progressão da Doença , Feminino , Células HCT116 , Humanos , Imuno-Histoquímica , Concentração Inibidora 50 , Irinotecano , Masculino , Pessoa de Meia-Idade , Fosforilação , RNA Interferente Pequeno/metabolismo , Estudos Retrospectivos
20.
Cancer Sci ; 104(6): 687-93, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23438367

RESUMO

Chemotherapy for colorectal cancer has become more complicated and diversified with the appearance of molecular-targeting agents. 5-Fluorouracil (5-FU) has been a mainstay of chemotherapy for colorectal cancer, but it is still unknown whether the combining of 5-FU with novel molecular-targeting agents is effective. Thymidylate synthase (TS) is a direct target of 5-FU, and the low TS level has been generally supposed to sensitize 5-FU's efficacy. We therefore hypothesized that RB-reactivating agents could enhance the efficacy of 5-FU, because the RB-reactivating agents could suppress the function of transcription factor E2F of TS gene promoter. We used three RB-reactivating agents, trametinib/GSK1120212 (MEK inhibitor), fenofibrate (PPARα agonist), and LY294002 (PI3K inhibitor), with 5-FU against human colon cancer HT-29 and HCT15 cells. Trametinib induced p15 and p27 expression and reduced cyclin D1 levels in HT-29 cells. Fenofibrate also dephosphorlated ERK1/2 and reduced cyclin D1 levels in HT-29 cells. LY294002 induced p27 expression in HCT15 cells. All three agents caused dephosphorylation of RB protein and G1-phase arrest with a reduction of TS expression. As a consequence, the combination of 5-FU with each of the agents resulted in a significant decrease of colony numbers in HT-29 or HCT15 cells. These results suggest "RB-reactivation therapy" using molecular-targeting agents to be a new strategy for 5-FU-based chemotherapy. In particular, we strongly expect trametinib, which was discovered in Japan and was recently submitted to FDA for approval, to be used together with established regimens for colorectal cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias do Colo/metabolismo , Fluoruracila/administração & dosagem , Piridonas/administração & dosagem , Pirimidinonas/administração & dosagem , Apoptose/efeitos dos fármacos , Western Blotting , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores Enzimáticos/administração & dosagem , Genes do Retinoblastoma/efeitos dos fármacos , Células HT29 , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Timidilato Sintase/efeitos dos fármacos , Timidilato Sintase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA