Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurourol Urodyn ; 42(8): 1812-1821, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37498134

RESUMO

AIMS: Chronic psychological stress aggravates lower urinary tract symptoms. Among others, water avoidance stress is a chronic psychological stressor that plays a causal role in the exacerbation and development of bladder dysfunction in rats. In this report, the effects of KPR-5714, which is a selective transient receptor potential melastatin 8 (TRPM8) antagonist, on bladder overactivity induced by water avoidance stress were examined. METHODS: Male rats were subjected to water avoidance stress for 2 h per day for 10 consecutive days. The effects of water avoidance stress on voiding behavior using metabolic cages and histological bladder changes were investigated in rats. The involvement of bladder C-fiber afferent on voiding frequency in rats exposed to water avoidance stress was assessed using capsaicin. The effects of KPR-5714 on storage dysfunction in rats subjected to water avoidance stress were examined. RESULTS: In voiding behavior measurements, water avoidance stress-induced storage dysfunction, causing a decrease in the mean voided volume and increasing voiding frequency. A comparison of bladders from normal rats and rats exposed to water avoidance stress showed no histological differences. Water avoidance stress-induced bladder overactivity was completely inhibited by pretreatment with capsaicin. KPR-5714 showed a tendency to increase the mean voided volume and significantly decreased the voiding frequency without affecting the total voided volume in these rats. CONCLUSION: The results suggest that KPR-5714 is a promising option for treating chronic psychological stress-induced bladder overactivity.


Assuntos
Bexiga Urinária Hiperativa , Bexiga Urinária , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Capsaicina/farmacologia , Modelos Animais de Doenças , Bexiga Urinária Hiperativa/etiologia , Bexiga Urinária Hiperativa/induzido quimicamente , Estresse Psicológico/complicações , Água
2.
Neurourol Urodyn ; 41(6): 1336-1343, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35537073

RESUMO

AIMS: Transient receptor potential melastatin 8 (TRPM8) has a role in the abnormal sensory transduction of the bladder and is involved in the pathophysiology of hyperactivity bladder disorders. The aim of this study is to examine the effects of KPR-5714, a novel and selective TRPM8 antagonist, on voiding dysfunction induced by bladder afferent hyperactivity via mechanosensitive C-fibers in rats. METHODS: The effects of intragastric administration of KPR-5714 on bladder overactivity induced by intravesical instillation of 10 mM ATP were investigated using cystometry in conscious female rats. We examined the effects of oral administration of KPR-5714 on voiding behavior using a metabolic cage in normal male rats and rats with an intratesticular injection of 3% acetic acid. RESULTS: In cystometry measurements, the intercontraction interval was decreased by intravesical ATP instillation. KPR-5714 (0.1, 0.3, and 1 mg/kg) dose-dependently prolonged the shortened intercontraction interval provoked by ATP. In voiding behavior measurements, intratesticular injection of acetic acid decreased the mean voided volume and increased voiding frequency. KPR-5714 (0.1 and 0.3 mg/kg) dose-dependently increased the mean voided volume and decreased voiding frequency without affecting the total voided volume in these rats. However, KPR-5714 (1 and 10 mg/kg) did not influence the voiding behavior in normal rats. CONCLUSION: The present results suggest that KPR-5714 improves voiding dysfunction by inhibiting the enhanced activity of mechanosensitive bladder C-fibers in rats with bladder overactivity and shows no significant change in voiding behavior in normal rats.


Assuntos
Bexiga Urinária Hiperativa , Bexiga Urinária , Ácido Acético/efeitos adversos , Trifosfato de Adenosina , Animais , Feminino , Masculino , Ratos , Ratos Sprague-Dawley , Bexiga Urinária Hiperativa/induzido quimicamente , Bexiga Urinária Hiperativa/etiologia , Micção/fisiologia
4.
J Med Chem ; 59(8): 3719-31, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27007871

RESUMO

To test the hypothesis that inhibitors of human concentrative nucleoside transporter 2 (hCNT2) suppress increases in serum urate levels derived from dietary purines, we previously identified adenosine derivative 1 as a potent hCNT2 inhibitor (IC50 = 0.64 µM), but further study was hampered due to its poor solubility. Here we describe the results of subsequent research to identify more soluble and more potent hCNT2 inhibitors, leading to the discovery of the benzimidazole nucleoside 22, which is the most potent hCNT2 inhibitor (IC50 = 0.062 µM) reported to date. Compound 22 significantly suppressed the increase in plasma uric acid levels after oral administration of purine nucleosides in rats. Because compound 22 was poorly absorbed orally in rats (F = 0.51%), its pharmacologic action was mostly limited to the gastrointestinal tract. These findings suggest that inhibition of hCNT2 in the gastrointestinal tract can be a promising approach for the treatment of hyperuricemia.


Assuntos
Adenina/química , Benzimidazóis/química , Gota/tratamento farmacológico , Hiperuricemia/tratamento farmacológico , Proteínas de Membrana Transportadoras/efeitos dos fármacos , Nucleosídeos/farmacologia , Animais , Humanos , Masculino , Nucleosídeos/química , Nucleosídeos/farmacocinética , Nucleosídeos/uso terapêutico , Ratos , Ratos Sprague-Dawley
5.
J Neurosci ; 35(14): 5606-24, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25855176

RESUMO

Although coordinated molecular signaling through excitatory and modulatory neurotransmissions is critical for the induction of immediate early genes (IEGs), which lead to effective changes in synaptic plasticity, the intracellular mechanisms responsible remain obscure. Here we measured the expression of IEGs and used bioluminescence imaging to visualize the expression of Bdnf when GPCRs, major neuromodulator receptors, were stimulated. Stimulation of pituitary adenylate cyclase-activating polypeptide (PACAP)-specific receptor (PAC1), a Gαs/q-protein-coupled GPCR, with PACAP selectively activated the calcineurin (CN) pathway that is controlled by calcium signals evoked via NMDAR. This signaling pathway then induced the expression of Bdnf and CN-dependent IEGs through the nuclear translocation of CREB-regulated transcriptional coactivator 1 (CRTC1). Intracerebroventricular injection of PACAP and intraperitoneal administration of MK801 in mice demonstrated that functional interactions between PAC1 and NMDAR induced the expression of Bdnf in the brain. Coactivation of NMDAR and PAC1 synergistically induced the expression of Bdnf attributable to selective activation of the CN pathway. This CN pathway-controlled expression of Bdnf was also induced by stimulating other Gαs- or Gαq-coupled GPCRs, such as dopamine D1, adrenaline ß, CRF, and neurotensin receptors, either with their cognate agonists or by direct stimulation of the protein kinase A (PKA)/PKC pathway with chemical activators. Thus, the GPCR-induced expression of IEGs in coordination with NMDAR might occur via the selective activation of the CN/CRTC1/CREB pathway under simultaneous excitatory and modulatory synaptic transmissions in neurons if either the Gαs/adenylate cyclase/PKA or Gαq/PLC/PKC-mediated pathway is activated.


Assuntos
Calcineurina/metabolismo , Cálcio/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Animais , Calcineurina/genética , Inibidores de Calcineurina/farmacologia , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Embrião de Mamíferos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA