RESUMO
OBJECTIVE: The minor allele (A) of the rs373863828 variant (p.Arg457Gln) in CREBRF is restricted to indigenous peoples of the Pacific islands (including New Zealand Maori and peoples of Polynesia), with a frequency of up to 25% in these populations. This allele associates with a large increase in body mass index (BMI) but with significantly lower risk of type-2 diabetes (T2D). It remains unclear whether the increased BMI is driven by increased adiposity or by increased lean mass. METHODS: We undertook body composition analysis using DXA in 189 young men of Maori and Pacific descent living in Aotearoa New Zealand. Further investigation was carried out in two orthologous Arg458Gln knockin mouse models on FVB/NJ and C57BL/6j backgrounds. RESULTS: The rs373863828 A allele was associated with lower fat mass when adjusted for BMI (p < 0.05) and was associated with significantly lower circulating levels of the muscle inhibitory hormone myostatin (p < 0.05). Supporting the human data, significant reductions in adipose tissue mass were observed in the knockin mice. This was more significant in older mice in both backgrounds and appeared to be the result of reduced age-associated increases in fat mass. The older male knockin mice on C57BL/6j background also had increased grip strength (p < 0.01) and lower levels of myostatin (p < 0.05). CONCLUSION: Overall, these results prove that the rs373863828 A-allele is associated with a reduction of myostatin levels which likely contribute to an age-dependent lowering of fat mass, at least in males.
Assuntos
Miostatina , Proteínas Supressoras de Tumor , Alelos , Animais , Composição Corporal , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miostatina/genética , Havaiano Nativo ou Outro Ilhéu do Pacífico , Nova Zelândia , Proteínas Supressoras de Tumor/genéticaRESUMO
AIMS/HYPOTHESIS: The minor A allele of rs373863828 (CREBRF p.Arg457Gln) is associated with increased BMI, but reduced risk of type 2 and gestational diabetes in Polynesian (Pacific peoples and Aotearoa New Zealand Maori) populations. This study investigates the effect of the A allele on insulin release and sensitivity in overweight/obese men without diabetes. METHODS: A mixed meal tolerance test was completed by 172 men (56 with the A allele) of Maori or Pacific ancestry, and 44 (24 with the A allele) had a frequently sampled IVGTT and hyperinsulinaemic-euglycaemic clamp. Mixed linear models with covariates age, ancestry and BMI were used to analyse the association between the A allele of rs373863828 and markers of insulin release and blood glucose regulation. RESULTS: The A allele of rs373863828 is associated with a greater increase in plasma insulin 30 min following a meal challenge without affecting the elevation in plasma glucose or incretins glucagon-like polypeptide-1 or gastric inhibitory polypeptide. Consistent with this point, following an i.v. infusion of a glucose bolus, participants with an A allele had higher early (p < 0.05 at 2 and 4 min) plasma insulin and C-peptide concentrations for a similar elevation in blood glucose as those homozygous for the major (G) allele. Despite increased plasma insulin, rs373863828 genotype was not associated with a significant difference (p > 0.05) in insulin sensitivity index or glucose disposal during hyperinsulinaemic-euglycaemic clamp. CONCLUSIONS/INTERPRETATION: rs373863828-A allele associates with increased glucose-stimulated insulin release without affecting insulin sensitivity, suggesting that CREBRF p.Arg457Gln may increase insulin release to reduce the risk of type 2 diabetes.