RESUMO
Aberrant gene expression patterns in acute myeloid leukemia (AML) with balanced chromosomal translocations are often associated with dysregulation of epigenetic modifiers. The AML1/ETO (RUNX1/MTG8) fusion protein, caused by the translocation (8;21)(q22;q22), leads to the epigenetic repression of its target genes. We aimed in this work to identify critical epigenetic modifiers, on which AML1/ETO-positive AML cells depend on for proliferation and survival using shRNA library screens and global transcriptomics approaches. Using shRNA library screens, we identified 41 commonly depleted genes in two AML1/ETO-positive cell lines Kasumi-1 and SKNO-1. We validated, genetically and pharmacologically, DNMT1 and ATR using several AML1/ETO-positive and negative cell lines. We also demonstrated in vivo differentiation of myeloblasts after treatment with the DNMT1 inhibitor decitabine in a patient with an AML1/ETO-positive AML. Bioinformatic analysis of global transcriptomics after AML1/ETO induction in 9/14/18-U937 cells identified 973 differentially expressed genes (DEGs). Three genes (PARP2, PRKCD, and SMARCA4) were both downregulated after AML1/ETO induction, and identified in shRNA screens. In conclusion, using unbiased shRNA library screens and global transcriptomics, we have identified several driver epigenetic regulators for proliferation in AML1/ETO-positive AML. DNMT1 and ATR were validated and are susceptible to pharmacological inhibition by small molecules showing promising preclinical and clinical efficacy.
Assuntos
Proliferação de Células , Subunidade alfa 2 de Fator de Ligação ao Core , Epigênese Genética , Leucemia Mieloide Aguda , Proteínas de Fusão Oncogênica , Proteína 1 Parceira de Translocação de RUNX1 , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proteína 1 Parceira de Translocação de RUNX1/genética , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Decitabina/farmacologia , Regulação Leucêmica da Expressão Gênica , RNA Interferente Pequeno/genética , Metilação de DNA , Sobrevivência Celular/genética , Diferenciação Celular/genéticaRESUMO
The multi-kinase inhibitor dasatinib has been implicated to be effective in pre-B-cell receptor (pre-BCR)-positive acute lymphoblastic leukemia (ALL) expressing the E2A-PBX1 fusion oncoprotein. The TGFß signaling pathway is involved in a wide variety of cellular processes, including embryonic development and cell homeostasis, and it can have dual roles in cancer: suppressing tumor growth at early stages and mediating tumor progression at later stages. In this study, we identified the upregulation of the TGFß signaling pathway in our previously generated human dasatinib-resistant pre-BCR+/E2A-PBX1+ ALL cells using global transcriptomic analysis. We confirm the upregulation of the TGFß pathway member SMAD3 at the transcriptional and translational levels in dasatinib-resistant pre-BCR+/E2A-PBX1+ ALL cells. Hence, dasatinib blocks, at least partially, TGFß-induced SMAD3 phosphorylation in several B-cell precursor (BCP) ALL cell lines as well as in dasatinib-resistant pre-BCR+/E2A-PBX1+ ALL cells. Activation of the TGFß signaling pathway by TGF-ß1 leads to growth inhibition by cell cycle arrest at the G0/G1 stage, increase in apoptosis and transcriptional changes of SMAD-targeted genes, e.g. c-MYC downregulation, in pre-BCR+/E2A-PBX1+ ALL cells. These results provide a better understanding about the role that the TGFß signaling pathway plays in leukemogenesis of BCP-ALL as well as in secondary drug resistance to dasatinib.
RESUMO
Relapse of the underlying disease is a frequent complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). In this study, we describe the clinical utility of measurable residual disease (MRD) and mixed chimerism (MC) assessment in circulating cell-free DNA (cfDNA) analysis to detect earlier relapse in patients with hematological malignancies after allo-HSCT. A total of 326 plasma and peripheral blood mononuclear cell (PBMCs) samples obtained from 62 patients with myeloid malignancies were analyzed by droplet-digital PCR (median follow-up: 827 days). Comparison of MC in patients at relapse and in complete remission identified an optimal discriminating threshold of 18% of recipient-derived cfDNA. After performing a targeted next-generation sequencing (NGS) panel, 136 mutations in 58 patients were detected. In a total of 119 paired samples, the putative mutations were detected in both cfDNA and PBMCs in 73 samples (61.3%). In 45 samples (37.8%) they were detected only in cfDNA, and in only one patient (0.9%) were they detected solely in DNA from PBMCs. Hence, in 6 out of 23 patients (26%) with relapse after allo-HSCT, MRD positivity was detected earlier in cfDNA (mean 397 days) than in DNA derived from PBMCs (mean 451 days). In summary, monitoring of MRD and MC in cfDNA might be useful for earlier relapse detection in patients with myeloid malignancies after allo-HSCT.
RESUMO
Wilms' tumor 1 (WT1) protein is highly immunogenic and overexpressed in acute myeloid leukemia (AML), consequently ranked as a promising target for novel immunotherapeutic strategies. Here we report our experience of a phase I/II clinical trial (NCT01051063) of a vaccination strategy based on WT1 recombinant protein (WT1-A10) together with vaccine adjuvant AS01B in five elderly AML patients (median age 69 years, range 63-75) receiving a total of 62 vaccinations (median 18, range 3-20) after standard chemotherapy. Clinical benefit was observed in three patients: one patient achieved measurable residual disease clearance during WT1 vaccination therapy, another patient maintained long-term molecular remission over 59 months after the first vaccination cycle. Interestingly, in one case, we observed a complete clonal switch at AML relapse with loss of WT1 expression, proposing suppression of the original AML clone by WT1-based vaccination therapy. Detected humoral and cellular CD4+ T cell immune responses point to efficient immune stimulation post-vaccination, complementing hints for induced conventional T cell infiltration into the bone marrow and a shift from senescent/exhausted to a more activated T cell profile. Overall, the vaccinations with WT1 recombinant protein had an acceptable safety profile and were thus well tolerated.To conclude, our data provide evidence of potential clinical efficacy of WT1 protein-based vaccination therapy in AML patients, warranting further investigations.
Assuntos
Vacinas Anticâncer , Leucemia Mieloide Aguda , Idoso , Humanos , Pessoa de Meia-Idade , Leucemia Mieloide Aguda/terapia , Proteínas Recombinantes/uso terapêutico , Vacinação , Proteínas WT1/uso terapêuticoRESUMO
The IL-6 family cytokine Oncostatin M (OSM) is involved in cell development, growth, hematopoiesis, inflammation, and cancer. Intriguingly, OSM has proliferative and antiproliferative effects depending on the target cell. The molecular mechanisms underlying these opposing effects are not fully understood. Previously, we found OSM upregulation in different myeloproliferative syndromes. However, OSM receptor (OSMR) expression was detected on stromal cells but not the malignant cells themselves. In the present study, we, therefore, investigated the effect of murine OSM (mOSM) on proliferation in stromal and fibroblast cell lines. We found that mOSM impairs the proliferation of bone marrow (BM) stromal cells, whereas fibroblasts responded to mOSM with increased proliferation. When we set out to reveal the mechanisms underlying these opposing effects, we detected increased expression of the OSM receptors OSMR and LIFR in stromal cells. Interestingly, Osmr knockdown and Lifr overexpression attenuated the OSM-mediated effect on proliferation in both cell lines indicating that mOSM affected the proliferation signaling mainly through the OSMR. Furthermore, mOSM induced activation of the JAK-STAT, PI3K-AKT, and MAPK-ERK pathways in OP9 and NIH/3T3 cells with differences in total protein levels between the two cell lines. Our findings offer new insights into the regulation of proliferation by mOSM.
Assuntos
Proliferação de Células , Fibroblastos/citologia , Células-Tronco Mesenquimais/citologia , Subunidade beta de Receptor de Oncostatina M/metabolismo , Oncostatina M/metabolismo , Animais , Linhagem Celular , Fibroblastos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Camundongos , Células NIH 3T3 , Transdução de SinaisRESUMO
High-dose chemotherapy, followed by autologous hematopoietic stem cell transplantation (auto-HSCT), is an established therapy for patients with hematological malignancies. The age of patients undergoing auto-HSCT and, therefore, the comorbidities, has increased over the last decades. However, the assessment of organ dysfunction prior to auto-HSCT has not been well studied. Therefore, we retrospectively analyzed the association of clinical factors and lung and cardiac function with outcome and complications after conditioning with BEAM (BCNU/carmustine, etoposide, cytarabine, melphalan) or high-dose melphalan in patients undergoing auto-HSCT. This study included 629 patients treated at our institution between 2007 and 2017; 334 and 295 were conditioned with BEAM or high-dose melphalan, respectively. The median follow-up was 52 months (range, 0.2-152) and 50 months (range, 0.5-149), respectively. In the multivariate analysis, we identified that progressive disease, CO-diffusion capacity corrected for hemoglobin (DLCOcSB) ≤ 60% of predicted, Karnofsky Performance Status (KPS) ≤ 80%, Hematopoietic Cell Transplantation Comorbidity Index (HCT-CI) score ≥ 4, and age > 70 years were associated with decreased overall survival (OS) in patients treated with BEAM. Similarly, DLCOcSB ≤ 60% of predicted, HCT-CI score ≥ 4, and age > 60 years were identified in patients treated with high-dose melphalan. Abnormalities in DLCOcSB ≤ 60% of predicted were associated with chemotherapy with lung-toxic substances, mediastinal radiotherapy, KPS ≤ 80%, current/previous smoking, and treatment in the intensive care unit. More often, patients with DLCOcSB ≤ 60% of predicted experienced nonrelapse mortality, including pulmonary causes of death. In summary, we identified DLCOcSB ≤ 60% of predicted as an independent risk factor for decreased OS in patients conditioned with BEAM or high-dose melphalan prior to auto-HSCT.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Pulmão , Pessoa de Meia-Idade , Estudos Retrospectivos , Condicionamento Pré-Transplante/efeitos adversos , Transplante AutólogoRESUMO
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is potentially curative for acute myeloid leukemia (AML). The inherent graft-versus-leukemia activity (GvL) may be optimized by donor lymphocyte infusions (DLI). Here we present our single-center experience of DLI use patterns and effectiveness, based on 342 consecutive adult patients receiving a first allo-HSCT for AML between 2009 and 2017. The median age at transplantation was 57 years (range 19-79), and the pre-transplant status was active disease in 58% and complete remission (CR) in 42% of cases. In a combined landmark analysis, patients in CR on day +30 and alive on day +100 were included. In this cohort (n=292), 93 patients received cryopreserved aliquots of peripheral blood-derived grafts for DLI (32%) and median survival was 55.7 months (2-year/5-year probability: 62%/49%). Median survival for patients receiving a first dose of DLI "preemptively," in the absence of relapse and guided by risk marker monitoring (preDLI; n=42), or only after hematological relapse (relDLI; n=51) was 40.9 months (2-year/5-year: 64%/43%) vs 10.4 months (2-year/5-year: 26%/10%), respectively. Survival was inferior when preDLI was initiated at a time of genetic risk marker detection vs mixed chimerism or clinical risk only. Time to first-dose preDLI vs time to first-dose relDLI was similar, suggesting that early warning and intrinsically lower dynamics of AML recurrence may contribute to effectiveness of preDLI-modified GvL activity. Future refinements of the preemptive DLI concept will benefit from collaborative efforts to diagnose measurable residual disease more reliably across the heterogeneous genomic spectrum of AML.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda/terapia , Transfusão de Linfócitos , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doadores de Tecidos , Transplante Homólogo , Resultado do Tratamento , Adulto JovemRESUMO
The age of patients undergoing allogeneic hematopoietic cell transplantation (allo-HCT) has increased during the last decades, mainly due to improved reduced-intensity/toxicity conditioning protocols. A reduced-intensity conditioning based on fludarabin, carmustin/BCNU and melphalan (FBM) has been previously developed at our institution. Since we observed detrimental effects in individual patients with compromised lung function, efforts have been made in order to replace BCNU by thiotepa (FTM) to reduce toxicity. In this study, we retrospectively analyzed the outcome, GvHD incidence, lung function and organ toxicity of patients with a median age of 62 years (range 21-79) transplanted for malignant disease (96.7%, 62.3% in intermediate/advanced disease stage) at our institution after conditioning with FBM (n = 136) or FTM (n = 105) between 2013 and 2017. Median follow-up was 868 days (range 0-2615). In multivariate analysis for overall survival, no difference was detected between both conditioning protocols in the presence of impaired lung function, age, lower performance, and liver disease previous allo-HCT. In the subgroup analysis, FTM was not inferior to FBM in patients with pulmonary disease prior allo-HCT, lymphoid malignancies, and higher comorbidity index. In conclusion, the reduced-intensity FBM and FTM conditioning protocols show adequate antineoplastic efficacy and are suitable for patients with impaired lung function.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Melfalan , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carmustina , Humanos , Pessoa de Meia-Idade , Estudos Retrospectivos , Tiotepa , Condicionamento Pré-Transplante , Transplante Homólogo , Vidarabina/análogos & derivados , Adulto JovemRESUMO
Cell-free DNA (cfDNA) has been investigated in acute graft-versus-host disease (aGvHD) following allogeneic cell transplantation (HSCT). Identifying the tissue of origin of cfDNA in patients with aGvHD is relevant particularly when a biopsy is not feasible. We investigate the cfDNA tissue of origin in patients with aGvHD using methylated gene biomarkers. Patients with liver, colon, or skin aGvHD (n = 28) were analyzed. Liver- and colon-derived cfDNA was measured using a colon- (SESN3) and liver (PTK2B)-specific methylation marker with digital droplet PCR. A statistically significant difference (p < 0.001) in PTK2B and SESN3 concentration was observed between patients with colon or liver GvHD and the control group. For SESN3 and PTK2B the area under the curve in the receiver-operating characteristic (ROC) space was 0.952 (95% CI, 0.888-1 p < 0.001) and 0.971 (95% CI, 0.964-1 p < 0.001), respectively. Thresholds to differentiate aGvHD from non-aGvHD in colon were 0 (sensitivity: 0.905; specificity: 0.989) and liver 1.5 (sensitivity: 0.928; specificity: 0.910). Clinical improvement of liver or colon aGvHD resulted in PTK2B and SESN3 reduced concentration. Whereas, in those patients without improvement the PTK2B and SESN3 level remained stable or increased. The PTK2B liver-specific marker and the SESN3 colon-specific marker and their longitudinal analysis might improve aGvHD detection.
Assuntos
Ácidos Nucleicos Livres , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Doença Aguda , Colo , Quinase 2 de Adesão Focal , Doença Enxerto-Hospedeiro/diagnóstico , Proteínas de Choque Térmico , Humanos , FígadoAssuntos
Adenina/análogos & derivados , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Linfoma/tratamento farmacológico , Piperidinas/uso terapêutico , Adenina/farmacologia , Adenina/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Piperidinas/farmacologia , Estudos RetrospectivosRESUMO
Donor lymphocyte infusions, collected from peripheral blood by apheresis, are regularly used to re-establishing disease control in patients with impending or full relapse after allogeneic cell transplantation. The cryopreservation and thawing processes of the cellular products, required for clinical needs, result in a decreased cellular recovery. The aim of this study was to perform an integral analysis of phenotypic and functional characteristics in different cell populations, within cryopreserved products used for therapeutic purposes. A total of 77 cryopreserved products were analysed. Cell viability and subpopulations such as CD3, CD4, CD8, CD14 and CD56 cells were quantified by FACS. Cell proliferation, cytotoxic capacity and CD4 intracellular ATP content were evaluated. A significant loss of cell viability was observed. CD56 cells were significantly reduced when compared with mononuclear cells without cryopreservation. Cell proliferation was also significantly reduced in the cryopreserved products. Cytotoxic capacity was decreased as well although it did not reach statistical significance. However, CD4 intracellular ATP was increased in the cryopreserved products. The analysed functional cell properties showed a wide distribution range although the apheresis, cryopreservation and thawing procedures were similar in all the analysed samples. Our findings may be useful for an improved characterisation of cryopreserved products to be used as donor lymphocyte infusion for therapeutic purposes.
Assuntos
Criopreservação/métodos , Linfócitos/metabolismo , Proliferação de Células , Feminino , Humanos , Masculino , FenótipoRESUMO
The major cause of death after allogeneic Hematopoietic Stem Cell Transplantation (HSCT) for acute myeloid leukemia (AML) is disease relapse. We investigated the expression of Inhibitory Receptors (IR; PD-1/CTLA-4/TIM-3/LAG-3/2B4/KLRG1/GITR) on T cells infiltrating the bone marrow (BM) of 32 AML patients relapsing (median 251 days) or maintaining complete remission (CR; median 1 year) after HSCT. A higher proportion of early-differentiated Memory Stem (TSCM) and Central Memory BM-T cells express multiple IR in relapsing patients than in CR patients. Exhausted BM-T cells at relapse display a restricted TCR repertoire, impaired effector functions and leukemia-reactive specificities. In 57 patients, early detection of severely exhausted (PD-1+Eomes+T-bet-) BM-TSCM predicts relapse. Accordingly, leukemia-specific T cells in patients prone to relapse display exhaustion markers, absent in patients maintaining long-term CR. These results highlight a wide, though reversible, immunological dysfunction in the BM of AML patients relapsing after HSCT and suggest new therapeutic opportunities for the disease.
Assuntos
Anergia Clonal , Regulação Leucêmica da Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Memória Imunológica/genética , Leucemia Mieloide Aguda/imunologia , Linfócitos T/imunologia , Adulto , Antígenos CD/genética , Antígenos CD/imunologia , Antineoplásicos/uso terapêutico , Células da Medula Óssea/imunologia , Células da Medula Óssea/patologia , Antígeno CTLA-4/genética , Antígeno CTLA-4/imunologia , Feminino , Proteína Relacionada a TNFR Induzida por Glucocorticoide/genética , Proteína Relacionada a TNFR Induzida por Glucocorticoide/imunologia , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/imunologia , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapia , Masculino , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Receptores KIR/genética , Receptores KIR/imunologia , Recidiva , Indução de Remissão , Estudos Retrospectivos , Transdução de Sinais , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Linfócitos T/patologia , Transplante Homólogo , Proteína do Gene 3 de Ativação de LinfócitosRESUMO
Transplantation of hematopoietic cells from a healthy individual (allogeneic hematopoietic cell transplantation (allo-HCT)) demonstrates that adoptive immunotherapy can cure blood cancers: still, post-transplantation relapses remain frequent. To explain their drivers, we analyzed the genomic and gene expression profiles of acute myeloid leukemia (AML) blasts purified from patients at serial time-points during their disease history. We identified a transcriptional signature specific for post-transplantation relapses and highly enriched in immune-related processes, including T cell costimulation and antigen presentation. In two independent patient cohorts we confirmed the deregulation of multiple costimulatory ligands on AML blasts at post-transplantation relapse (PD-L1, B7-H3, CD80, PVRL2), mirrored by concomitant changes in circulating donor T cells. Likewise, we documented the frequent loss of surface expression of HLA-DR, -DQ and -DP on leukemia cells, due to downregulation of the HLA class II regulator CIITA. We show that loss of HLA class II expression and upregulation of inhibitory checkpoint molecules represent alternative modalities to abolish AML recognition from donor-derived T cells, and can be counteracted by interferon-γ or checkpoint blockade, respectively. Our results demonstrate that the deregulation of pathways involved in T cell-mediated allorecognition is a distinctive feature and driver of AML relapses after allo-HCT, which can be rapidly translated into personalized therapies.
Assuntos
Perfilação da Expressão Gênica , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Regulação Leucêmica da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Leucemia Mieloide Aguda/terapia , Ativação Linfocitária/imunologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Recidiva , Reprodutibilidade dos Testes , Transplante HomólogoRESUMO
Background Minimal residual disease (MRD) and hematopoietic chimerism testing influences clinical decision and therapeutic intervention in patients after allogeneic stem cell transplantation (HSCT). However, treatment approaches to induce complete donor chimerism and MRD negativity can lead to complications such as graft-versus-host disease (GvHD) and marrow aplasia. Therefore, there is a need for comprehensive characterization of the molecular remission status after transplantation. Methods We analyzed 764 samples from 70 patients after HSCT for the simultaneous measurement of chimerism and molecular targets used for MRD testing with a digital PCR (dPCR) platform. Results Mixed chimerism (MC) was detected in 219 samples from 37 patients. The mean percentage of host derived DNA in these clinical samples was 4.3%. Molecular relapse with a positive MRD marker and/or increased WT1 expression was observed in 15 patients. In addition to WT1 overexpression, other MRD positive markers were: NPM1 (Type A, B, K), DNMT3A (R882H), MLL-PTD, IDH1 (R132H) and KRAS (G12S). Increasing MC was observed in 15 patients. This group of patients showed either a positive MRD marker, increased WT1 expression or both. Next, we analyzed whether MC or the molecular target for MRD was first detected. MC and MRD marker positivity in this group was first detected in six and two patients, respectively. In the remaining seven patients MC and MRD positivity was detected simultaneously. Conclusions The combination of MRD and chimerism markers in a dPCR platform represents a practical, sensitive and accurate diagnostic tool for the comprehensive assessment of the molecular remission status of patients undergoing HSCT.
Assuntos
Doenças da Medula Óssea/diagnóstico , Quimerismo , DNA/análise , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mieloide Aguda/diagnóstico , Adulto , Idoso , Biomarcadores/análise , Biomarcadores/metabolismo , DNA/metabolismo , Feminino , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasia Residual , Nucleofosmina , Reação em Cadeia da Polimerase/métodos , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Transplante Homólogo/efeitos adversos , Adulto JovemRESUMO
Lung function deterioration contributes to treatment-related morbidity and mortality in patients after allogeneic hematopoietic cell transplantation (allo-HCT). Better understanding of impaired lung function including bronchiolitis obliterans syndrome (BOS) as chronic manifestation of graft-versus-host disease (GVHD) might improve outcomes of patients after allo-HCT. To detect early pulmonary function test abnormalities associated with BOS incidence and outcome after allo-HCT, we performed a retrospective analysis of homogenous-treated 445 patients (median age, 61.9 years; range, 19 to 76 years) with a reduced intensity/toxicity conditioning protocol. The cumulative incidence of BOS was 4.1% (95% confidence interval [CI], 2.6 to 6.4) at 1 year and 8.6% (95% CI, 6.3 to 11.6) at 5 years after allo-HCT with a median follow-up of 43.2 months (range, 3.3 to 209 months). In multivariate analysis, pre-existence of moderate small airway disease reflected by decreased midexpiratory flows before allo-HCT was associated with increased risk for BOS development. In addition, severe small airway disease before allo-HCT and combined restrictive/obstructive lung disease at day +100 after allo-HCT were associated with higher risk for nonrelapse mortality (NRM) due mainly to pulmonary cause of death. In summary, we identified novel pulmonary function test abnormalities prior and after allo-HCT associated with BOS development and NRM. These findings might help to identify a risk population and result in personalized GVHD prophylaxis and preventive or early therapeutic interventions.
Assuntos
Bronquiolite Obliterante/diagnóstico , Transplante de Células-Tronco Hematopoéticas/métodos , Pneumopatias/etiologia , Pulmão/patologia , Condicionamento Pré-Transplante/métodos , Adulto , Idoso , Bronquiolite Obliterante/patologia , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , Resultado do Tratamento , Adulto JovemRESUMO
This corrects the article DOI: 10.1038/nm.4484.
RESUMO
Individuals with acute myeloid leukemia (AML) harboring an internal tandem duplication (ITD) in the gene encoding Fms-related tyrosine kinase 3 (FLT3) who relapse after allogeneic hematopoietic cell transplantation (allo-HCT) have a 1-year survival rate below 20%. We observed that sorafenib, a multitargeted tyrosine kinase inhibitor, increased IL-15 production by FLT3-ITD+ leukemia cells. This synergized with the allogeneic CD8+ T cell response, leading to long-term survival in six mouse models of FLT3-ITD+ AML. Sorafenib-related IL-15 production caused an increase in CD8+CD107a+IFN-γ+ T cells with features of longevity (high levels of Bcl-2 and reduced PD-1 levels), which eradicated leukemia in secondary recipients. Mechanistically, sorafenib reduced expression of the transcription factor ATF4, thereby blocking negative regulation of interferon regulatory factor 7 (IRF7) activation, which enhanced IL-15 transcription. Both IRF7 knockdown and ATF4 overexpression in leukemia cells antagonized sorafenib-induced IL-15 production in vitro. Human FLT3-ITD+ AML cells obtained from sorafenib responders following sorafenib therapy showed increased levels of IL-15, phosphorylated IRF7, and a transcriptionally active IRF7 chromatin state. The mitochondrial spare respiratory capacity and glycolytic capacity of CD8+ T cells increased upon sorafenib treatment in sorafenib responders but not in nonresponders. Our findings indicate that the synergism of T cells and sorafenib is mediated via reduced ATF4 expression, causing activation of the IRF7-IL-15 axis in leukemia cells and thereby leading to metabolic reprogramming of leukemia-reactive T cells in humans. Therefore, sorafenib treatment has the potential to contribute to an immune-mediated cure of FLT3-ITD-mutant AML relapse, an otherwise fatal complication after allo-HCT.
Assuntos
Fator 4 Ativador da Transcrição/genética , Fator Regulador 7 de Interferon/genética , Interleucina-15/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Reprogramação Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Sorafenibe/administração & dosagem , Sorafenibe/efeitos adversos , Sequências de Repetição em Tandem/genética , Transplante Homólogo/efeitos adversosRESUMO
Cell-free DNA (cfDNA) isolated from plasma or serum has received increasing interest for diagnostic applications in pregnancy, solid tumors and solid organ transplantation. The reported clinical usefulness of cfDNA obtained from plasma or serum in patients undergoing allogeneic cell transplantation (alloHSCT) is scarce. OBJECTIVE: To analyze the potential clinical utility of cfDNA chimerism analysis after alloHSCT. DESIGN AND METHODS: A total of 196 samples obtained from 110 patients were investigated for their chimeric status both in peripheral blood and plasma using standard PCR for microsatellite amplification. Plasma DNA size distribution was analyzed using capillary electrophoresis. RESULTS: The mean cfDNA concentration in the transplanted patients was 469ng/ml (range: 50-10,700ng/ml). The size range of almost 80% of the analyzed fragments was between 80 and 200bp. In 41 out of the 110 patients included in the study a mixture of donor and recipient plasma cfDNA was detected. There was a statistically significant difference in the percentage of plasma mixed chimerism between the patients without transplant related complications and the patients with either GvHD (p<0.05) or relapse (p<0.01). In those patients who showed improvement of GvHD also displayed a decrease in the observable percentage of recipient cfDNA during GvHD treatment. In patients without improvement or even with worsening of acute GvHD, stable or increasing levels of recipient cfDNA were detected. CONCLUSIONS: cfDNA in combination with peripheral blood and bone marrow cell chimerism analysis might improve its utility in the clinic in particular in those patients with clinical complications after alloHSCT.