Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pathol ; 243(3): 390-400, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28815607

RESUMO

Glomerular scarring, known as glomerulosclerosis, occurs in many chronic kidney diseases and involves interaction between glomerular endothelial cells (GECs), podocytes, and mesangial cells (MCs), leading to signals that promote extracellular matrix deposition and endothelial cell dysfunction and loss. We describe a 3D tri-culture system to model human glomerulosclerosis. In 3D monoculture, each cell type alters its phenotype in response to TGFß, which has been implicated as an important mediator of glomerulosclerosis. GECs form a lumenized vascular network, which regresses in response to TGFß. MCs respond to TGFß by forming glomerulosclerotic-like nodules with matrix deposition. TGFß treatment of podocytes does not alter cell morphology but increases connective tissue growth factor (CTGF) expression. BMP7 prevents TGFß-induced GEC network regression, whereas TGFß-induced MC nodule formation is prevented by SMAD3 siRNA knockdown or ALK5 inhibitors but not BMP7, and increased phospho-SMAD3 was observed in human glomerulosclerosis. In 3D tri-culture, GECs, podocytes, and MCs form a vascular network in which GECs and podocytes interact intimately within a matrix containing MCs. TGFß treatment induces formation of nodules, but combined inhibition of ALK5 and CTGF is required to prevent TGFß-induced nodule formation in tri-cellular cultures. Identification of therapeutic targets for glomerulosclerosis depends on the 3D culture of all three glomerular cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/metabolismo , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Glomérulos Renais/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Matriz Extracelular/metabolismo , Humanos , Nefropatias/patologia , Glomérulos Renais/metabolismo , Células Mesangiais/citologia , Receptor do Fator de Crescimento Transformador beta Tipo I
2.
PLoS One ; 9(3): e91334, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24651450

RESUMO

The endothelial cell has a remarkable ability for sub-specialisation, adapted to the needs of a variety of vascular beds. The role of developmental programming versus the tissue contextual environment for this specialization is not well understood. Here we describe a hierarchy of expression of HOX genes associated with endothelial cell origin and location. In initial microarray studies, differential gene expression was examined in two endothelial cell lines: blood derived outgrowth endothelial cells (BOECs) and pulmonary artery endothelial cells. This suggested shared and differential patterns of HOX gene expression between the two endothelial lines. For example, this included a cluster on chromosome 2 of HOXD1, HOXD3, HOXD4, HOXD8 and HOXD9 that was expressed at a higher level in BOECs. Quantative PCR confirmed the higher expression of these HOXs in BOECs, a pattern that was shared by a variety of microvascular endothelial cell lines. Subsequently, we analysed publically available microarrays from a variety of adult cell and tissue types using the whole "HOX transcriptome" of all 39 HOX genes. Using hierarchical clustering analysis the HOX transcriptome was able to discriminate endothelial cells from 61 diverse human cell lines of various origins. In a separate publically available microarray dataset of 53 human endothelial cell lines, the HOX transcriptome additionally organized endothelial cells related to their organ or tissue of origin. Human tissue staining for HOXD8 and HOXD9 confirmed endothelial expression and also supported increased microvascular expression of these HOXs. Together these observations suggest a significant involvement of HOX genes in endothelial cell positional identity.


Assuntos
Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Genes Homeobox , Proteínas de Homeodomínio/genética , Adulto , Animais , Diferenciação Celular/genética , Linhagem Celular , Análise por Conglomerados , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/citologia , Células Endoteliais/ultraestrutura , Feto/embriologia , Feto/metabolismo , Ontologia Genética , Proteínas de Homeodomínio/metabolismo , Humanos , Pulmão/citologia , Pulmão/embriologia , Camundongos , Neovascularização Fisiológica/genética , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos/genética , Fenótipo , Artéria Pulmonar/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes
3.
J Pathol ; 230(2): 132-47, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23460469

RESUMO

TNF signals through two distinct receptors, designated TNFR1 and TNFR2, which initiate diverse cellular effects that include cell survival, activation, differentiation, and proliferation and cell death. These cellular responses can promote immunological and inflammatory responses that eradicate infectious agents, but can also lead to local tissue injury at sites of infection and harmful systemic effects. Defining the molecular mechanisms involved in TNF responses, the effects of natural and experimental genetic diversity in TNF signalling and the effects of therapeutic blockade of TNF has increased our understanding of the key role that TNF plays in infectious disease.


Assuntos
Doenças Transmissíveis/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Morte Celular , Doenças Transmissíveis/genética , Regulação da Expressão Gênica , Humanos , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/antagonistas & inibidores
4.
J Pathol ; 230(3): 241-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23460481

RESUMO

Tumour necrosis factor (TNF) was originally described as a circulating factor that can induce haemorrhagic necrosis of tumours. It is now clear that TNF has many different functions in cancer biology. In addition to causing the death of cancer cells, TNF can activate cancer cell survival and proliferation pathways, trigger inflammatory cell infiltration of tumours and promote angiogenesis and tumour cell migration and invasion. These effects can be explained by the diverse cellular responses TNF can initiate through distinct signal transduction pathways, opening the way for more selective targeting of TNF signalling in cancer therapy.


Assuntos
Neoplasias/patologia , Fatores de Necrose Tumoral/fisiologia , Animais , Morte Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Modelos Biológicos , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neoplasias/terapia , Neovascularização Patológica , Transdução de Sinais , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA