Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(3): 614-630, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429422

RESUMO

Microbial transformation of bile acids affects intestinal immune homoeostasis but its impact on inflammatory pathologies remains largely unknown. Using a mouse model of graft-versus-host disease (GVHD), we found that T cell-driven inflammation decreased the abundance of microbiome-encoded bile salt hydrolase (BSH) genes and reduced the levels of unconjugated and microbe-derived bile acids. Several microbe-derived bile acids attenuated farnesoid X receptor (FXR) activation, suggesting that loss of these metabolites during inflammation may increase FXR activity and exacerbate the course of disease. Indeed, mortality increased with pharmacological activation of FXR and decreased with its genetic ablation in donor T cells during mouse GVHD. Furthermore, patients with GVHD after allogeneic hematopoietic cell transplantation showed similar loss of BSH and the associated reduction in unconjugated and microbe-derived bile acids. In addition, the FXR antagonist ursodeoxycholic acid reduced the proliferation of human T cells and was associated with a lower risk of GVHD-related mortality in patients. We propose that dysbiosis and loss of microbe-derived bile acids during inflammation may be an important mechanism to amplify T cell-mediated diseases.


Assuntos
Doença Enxerto-Hospedeiro , Linfócitos T , Humanos , Intestinos , Inflamação , Ácidos e Sais Biliares
2.
Cancer Immunol Res ; 12(3): 308-321, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38108398

RESUMO

Colitis induced by treatment with immune-checkpoint inhibitors (ICI), termed irColitis, is a substantial cause of morbidity complicating cancer treatment. We hypothesized that abnormal fecal microbiome features would be present at the time of irColitis onset and that restoring the microbiome with fecal transplant from a healthy donor would mitigate disease severity. Herein, we present fecal microbiota profiles from 18 patients with irColitis from a single center, 5 of whom were treated with healthy-donor fecal microbial transplantation (FMT). Although fecal samples collected at onset of irColitis had comparable α-diversity to that of comparator groups with gastrointestinal symptoms, irColitis was characterized by fecal microbial dysbiosis. Abundances of Proteobacteria were associated with irColitis in multivariable analyses. Five patients with irColitis refractory to steroids and biologic anti-inflammatory agents received healthy-donor FMT, with initial clinical improvement in irColitis symptoms observed in four of five patients. Two subsequently exhibited recurrence of irColitis symptoms following courses of antibiotics. Both received a second "salvage" FMT that was, again, followed by clinical improvement of irColitis. In summary, we observed distinct microbial community changes that were present at the time of irColitis onset. FMT was followed by clinical improvements in several cases of steroid- and biologic-agent-refractory irColitis. Strategies to restore or prevent microbiome dysbiosis in the context of immunotherapy toxicities should be further explored in prospective clinical trials.


Assuntos
Produtos Biológicos , Colite , Microbioma Gastrointestinal , Humanos , Transplante de Microbiota Fecal/efeitos adversos , Estudos Prospectivos , Disbiose/terapia , Disbiose/etiologia , Resultado do Tratamento , Colite/terapia , Colite/complicações
3.
Sci Transl Med ; 15(706): eabq0476, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37494469

RESUMO

T cells are the central drivers of many inflammatory diseases, but the repertoire of tissue-resident T cells at sites of pathology in human organs remains poorly understood. We examined the site-specificity of T cell receptor (TCR) repertoires across tissues (5 to 18 tissues per patient) in prospectively collected autopsies of patients with and without graft-versus-host disease (GVHD), a potentially lethal tissue-targeting complication of allogeneic hematopoietic cell transplantation, and in mouse models of GVHD. Anatomic similarity between tissues was a key determinant of TCR repertoire composition within patients, independent of disease or transplant status. The T cells recovered from peripheral blood and spleens in patients and mice captured a limited portion of the TCR repertoire detected in tissues. Whereas few T cell clones were shared across patients, motif-based clustering revealed shared repertoire signatures across patients in a tissue-specific fashion. T cells at disease sites had a tissue-resident phenotype and were of donor origin based on single-cell chimerism analysis. These data demonstrate the complex composition of T cell populations that persist in human tissues at the end stage of an inflammatory disorder after lymphocyte-directed therapy. These findings also underscore the importance of studying T cell in tissues rather than blood for tissue-based pathologies and suggest the tissue-specific nature of both the endogenous and posttransplant T cell landscape.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Animais , Linfócitos T/patologia , Doença Enxerto-Hospedeiro/patologia , Receptores de Antígenos de Linfócitos T
4.
bioRxiv ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37205350

RESUMO

Identifying predictive biomarkers of patient outcomes from high-throughput microbiome data is of high interest, while existing computational methods do not satisfactorily account for complex survival endpoints, longitudinal samples, and taxa-specific sequencing biases. We present FLORAL (https://vdblab.github.io/FLORAL/), an open-source computational tool to perform scalable log-ratio lasso regression and microbial feature selection for continuous, binary, time-to-event, and competing risk outcomes, with compatibility of longitudinal microbiome data as time-dependent covariates. The proposed method adapts the augmented Lagrangian algorithm for a zero-sum constraint optimization problem while enabling a two-stage screening process for extended false-positive control. In extensive simulation and real-data analyses, FLORAL achieved consistently better false-positive control compared to other lasso-based approaches, and better sensitivity over popular differential abundance testing methods for datasets with smaller sample size. In a survival analysis in allogeneic hematopoietic-cell transplant, we further demonstrated considerable improvement by FLORAL in microbial feature selection by utilizing longitudinal microbiome data over only using baseline microbiome data.

5.
Clin Cancer Res ; 29(1): 165-173, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36322005

RESUMO

PURPOSE: The gut microbiota is subject to multiple insults in allogeneic hematopoietic cell transplantation (allo-HCT) recipients. We hypothesized that preparative conditioning regimens contribute to microbiota perturbation in allo-HCT. EXPERIMENTAL DESIGN: This was a retrospective study that evaluated the relationship between conditioning regimens exposure in 1,188 allo-HCT recipients and the gut microbiome. Stool samples collected from 20 days before transplantation up to 30 days after were profiled using 16S rRNA sequencing. Microbiota injury was quantified by changes in α-diversity. RESULTS: We identified distinct patterns of microbiota injury that varied by conditioning regimen. Diversity loss was graded into three levels of conditioning-associated microbiota injury (CMBI) in a multivariable model that included antibiotic exposures. High-intensity regimens, such as total body irradiation (TBI)-thiotepa-cyclophosphamide, were associated with the greatest injury (CMBI III). In contrast, the nonmyeloablative regimen fludarabine-cyclophosphamide with low-dose TBI (Flu/Cy/TBI200) had a low-grade injury (CMBI I). The risk of acute GVHD correlated with CMBI degree. Pretransplant microbial compositions were best preserved with Flu/Cy/TBI200, whereas other regimens were associated with loss of commensal bacteria and expansion of Enterococcus. CONCLUSIONS: Our findings support an interaction between conditioning at the regimen level and the extent of microbiota injury.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Microbiota , Humanos , Estudos Retrospectivos , RNA Ribossômico 16S , Transplante Homólogo/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Ciclofosfamida/efeitos adversos , Doença Enxerto-Hospedeiro/diagnóstico , Doença Enxerto-Hospedeiro/etiologia , Condicionamento Pré-Transplante/efeitos adversos
6.
Blood ; 139(18): 2758-2769, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35061893

RESUMO

Low intestinal microbial diversity is associated with poor outcomes after allogeneic hematopoietic cell transplantation (HCT). Using 16S rRNA sequencing of 2067 stool samples and flow cytometry data from 2370 peripheral blood samples drawn from 894 patients who underwent allogeneic HCT, we have linked features of the early post-HCT microbiome with subsequent immune cell recovery. We examined lymphocyte recovery and microbiota features in recipients of both unmodified and CD34-selected allografts. We observed that fecal microbial diversity was an independent predictor of CD4 T-cell count 3 months after HCT in recipients of a CD34-selected allograft, who are dependent on de novo lymphopoiesis for their immune recovery. In multivariate models using clinical factors and microbiota features, we consistently observed that increased fecal relative abundance of genus Staphylococcus during the early posttransplant period was associated with worse CD4 T-cell recovery. Our observations suggest that the intestinal bacteria, or the factors they produce, can affect early lymphopoiesis and the homeostasis of allograft-derived T cells after transplantation.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Linfócitos T CD4-Positivos , Humanos , Contagem de Linfócitos , RNA Ribossômico 16S , Transplante Homólogo
7.
Access Microbiol ; 2(9): acmi000143, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195978

RESUMO

The Clermont PCR method for phylotyping Escherichia coli remains a useful classification scheme even though genome sequencing is now routine, and higher-resolution sequence typing schemes are now available. Relating present-day whole-genome E. coli classifications to legacy phylotyping is essential for harmonizing the historical literature and understanding of this important organism. Therefore, we present EzClermont - a novel in silico Clermont PCR phylotyping tool to enable ready application of this phylotyping scheme to whole-genome assemblies. We evaluate this tool against phylogenomic classifications, and an alternative software implementation of Clermont typing. EzClermont is available as a web app at www.ezclermont.org, and as a command-line tool at https://nickp60.github.io/EzClermont/.

8.
Nucleic Acids Res ; 46(11): e68, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29608703

RESUMO

The vast majority of bacterial genome sequencing has been performed using Illumina short reads. Because of the inherent difficulty of resolving repeated regions with short reads alone, only ∼10% of sequencing projects have resulted in a closed genome. The most common repeated regions are those coding for ribosomal operons (rDNAs), which occur in a bacterial genome between 1 and 15 times, and are typically used as sequence markers to classify and identify bacteria. Here, we exploit the genomic context in which rDNAs occur across taxa to improve assembly of these regions relative to de novo sequencing by using the conserved nature of rDNAs across taxa and the uniqueness of their flanking regions within a genome. We describe a method to construct targeted pseudocontigs generated by iteratively assembling reads that map to a reference genome's rDNAs. These pseudocontigs are then used to more accurately assemble the newly sequenced chromosome. We show that this method, implemented as riboSeed, correctly bridges across adjacent contigs in bacterial genome assembly and, when used in conjunction with other genome polishing tools, can assist in closure of a genome.


Assuntos
DNA Bacteriano/genética , DNA Ribossômico/genética , Escherichia coli/genética , Genoma Bacteriano/genética , Klebsiella pneumoniae/genética , Análise de Sequência de DNA/métodos , Sequência de Bases , Mapeamento Cromossômico/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software
9.
Mol Microbiol ; 101(3): 495-514, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27116338

RESUMO

The global regulator CodY controls the expression of dozens of metabolism and virulence genes in the opportunistic pathogen Staphylococcus aureus in response to the availability of isoleucine, leucine and valine (ILV), and GTP. Using RNA-Seq transcriptional profiling and partial activity variants, we reveal that S. aureus CodY activity grades metabolic and virulence gene expression as a function of ILV availability, mediating metabolic reorganization and controlling virulence factor production in vitro. Strains lacking CodY regulatory activity produce a PIA-dependent biofilm, but development is restricted under conditions that confer partial CodY activity. CodY regulates the expression of thermonuclease (nuc) via the Sae two-component system, revealing cascading virulence regulation and factor production as CodY activity is reduced. Proteins that mediate the host-pathogen interaction and subvert the immune response are shut off at intermediate levels of CodY activity, while genes coding for enzymes and proteins that extract nutrients from tissue, that kill host cells, and that synthesize amino acids are among the last genes to be derepressed. We conclude that S. aureus uses CodY to limit host damage to only the most severe starvation conditions, providing insight into one potential mechanism by which S. aureus transitions from a commensal bacterium to an invasive pathogen.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Biofilmes , Interações Hospedeiro-Patógeno/genética , Staphylococcus aureus/metabolismo , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA