Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 27(10): 3951-3960, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35906488

RESUMO

Hypothalamic agouti-related peptide and neuropeptide Y-expressing (AgRP) neurons have a critical role in both feeding and non-feeding behaviors of newborn, adolescent, and adult mice, suggesting their broad modulatory impact on brain functions. Here we show that constitutive impairment of AgRP neurons or their peripubertal chemogenetic inhibition resulted in both a numerical and functional reduction of neurons in the medial prefrontal cortex (mPFC) of mice. These changes were accompanied by alteration of oscillatory network activity in mPFC, impaired sensorimotor gating, and altered ambulatory behavior that could be reversed by the administration of clozapine, a non-selective dopamine receptor antagonist. The observed AgRP effects are transduced to mPFC in part via dopaminergic neurons in the ventral tegmental area and may also be conveyed by medial thalamic neurons. Our results unmasked a previously unsuspected role for hypothalamic AgRP neurons in control of neuronal pathways that regulate higher-order brain functions during development and in adulthood.


Assuntos
Hipotálamo , Neuropeptídeo Y , Animais , Camundongos , Proteína Relacionada com Agouti/metabolismo , Neurônios Dopaminérgicos/metabolismo , Hipotálamo/metabolismo , Neuropeptídeo Y/metabolismo , Córtex Pré-Frontal/metabolismo
2.
Cell Metab ; 22(6): 962-70, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26603190

RESUMO

The essential role of the brain in maintaining energy homeostasis has motivated the drive to define the neural circuitry that integrates external and internal stimuli to enact appropriate and consequential metabolic and behavioral responses. The hypothalamus has received significant attention in this regard given its ability to influence feeding behavior, yet organisms rely on a much broader diversity and distribution of neuronal networks to regulate both energy intake and expenditure. Because energy balance is a fundamental determinant of survival and success of an organism, it is not surprising that emerging data connect circuits controlling feeding and energy balance with higher brain functions and degenerative processes. In this review, we will highlight both classically defined and emerging aspects of brain control of energy homeostasis.


Assuntos
Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Animais , Encéfalo/metabolismo , Ingestão de Energia , Humanos , Hipófise/metabolismo , Receptores de Melanocortina/metabolismo
3.
J Gerontol A Biol Sci Med Sci ; 70(9): 1088-91, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25878032

RESUMO

Chemosensation is a potent modulator of organismal physiology and longevity. In Drosophila, loss of recognition of diverse tastants has significant and bidirectional life-span effects. Recently published results revealed that when flies were unable to taste water, they increased its internal generation, which may have subsequently altered life span. To determine whether similar adaptive responses occur in other contexts, we explored the impact of sensory deficiency of other metabolically important molecules. Trehalose is a major circulating carbohydrate in the fly that is recognized by the gustatory receptor Gr5a. Gr5a mutant flies are short lived, and we found that they specifically increased whole-body and circulating levels of trehalose, but not other carbohydrates, likely through upregulation of de novo synthesis. dILP2 transcript levels were increased in Gr5a mutants, a possible response intended to reduce hypertrehalosemia, and likely a contributing factor to their reduced life span. Together, these data suggest that compensatory physiological responses to perceived environmental scarcity, which are designed to alleviate the ostensive shortage, may be a common outcome of sensory manipulation. We suggest that future investigations into the mechanisms underlying sensory modulation of aging may benefit by focusing on direct or indirect consequences of physiological changes that are designed to correct perceived disparity with the environment.


Assuntos
Adaptação Fisiológica/fisiologia , Drosophila/fisiologia , Longevidade/fisiologia , Distúrbios do Paladar/fisiopatologia , Animais , Proteínas de Drosophila/sangue , Proteínas de Drosophila/genética , Proteínas Inibidoras de Apoptose/sangue , Mutação , Receptores de Superfície Celular/genética , Trealose/sangue
4.
Proc Natl Acad Sci U S A ; 111(22): 8143-8, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24847072

RESUMO

In Caenorhabditis elegans, a subset of gustatory neurons, as well as olfactory neurons, shortens lifespan, whereas a different subset of gustatory neurons lengthens it. Recently, the lifespan-shortening effect of olfactory neurons has been reported to be conserved in Drosophila. Here we show that the Drosophila gustatory system also affects lifespan in a bidirectional manner. We find that taste inputs shorten lifespan through inhibition of the insulin pathway effector dFOXO, whereas other taste inputs lengthen lifespan in parallel to this pathway. We also note that the gustatory influence on lifespan does not necessarily depend on food intake levels. Finally, we identify the nature of some of the taste inputs that could shorten versus lengthen lifespan. Together our data suggest that different gustatory cues can modulate the activities of distinct signaling pathways, including different insulin-like peptides, to promote physiological changes that ultimately affect lifespan.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Longevidade/fisiologia , Transdução de Sinais/fisiologia , Paladar/fisiologia , Envelhecimento/fisiologia , Animais , Animais Geneticamente Modificados , Restrição Calórica , Células Quimiorreceptoras/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Fatores de Transcrição Forkhead/genética , Insulina/metabolismo , Masculino , Fenótipo , Paladar/genética
5.
Proc Natl Acad Sci U S A ; 111(22): 8137-42, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24821805

RESUMO

Sensory perception modulates lifespan across taxa, presumably due to alterations in physiological homeostasis after central nervous system integration. The coordinating circuitry of this control, however, remains unknown. Here, we used the Drosophila melanogaster gustatory system to dissect one component of sensory regulation of aging. We found that loss of the critical water sensor, pickpocket 28 (ppk28), altered metabolic homeostasis to promote internal lipid and water stores and extended healthy lifespan. Additionally, loss of ppk28 increased neuronal glucagon-like adipokinetic hormone (AKH) signaling, and the AKH receptor was necessary for ppk28 mutant effects. Furthermore, activation of AKH-producing cells alone was sufficient to enhance longevity, suggesting that a perceived lack of water availability triggers a metabolic shift that promotes the production of metabolic water and increases lifespan via AKH signaling. This work provides an example of how discrete gustatory signals recruit nutrient-dependent endocrine systems to coordinate metabolic homeostasis, thereby influencing long-term health and aging.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Canais Epiteliais de Sódio/metabolismo , Hormônios de Inseto/metabolismo , Oligopeptídeos/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Receptores de Glucagon/metabolismo , Transdução de Sinais/fisiologia , Paladar/fisiologia , Envelhecimento/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/fisiologia , Feminino , Alimentos , Homeostase/fisiologia , Longevidade/fisiologia , Masculino , Células Neuroendócrinas/metabolismo , Células Neuroendócrinas/fisiologia , Ácido Pirrolidonocarboxílico/metabolismo , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA