Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39173631

RESUMO

GlycoRNA consists of RNAs modified with secretory N-glycans that are presented on the cell surface. Although previous work supported a covalent linkage between RNA and glycans, the direct chemical nature of the RNA-glycan connection was not described. Here, we develop a sensitive and scalable protocol to detect and characterize native glycoRNAs. Leveraging RNA-optimized periodate oxidation and aldehyde ligation (rPAL) and sequential window acquisition of all theoretical mass spectra (SWATH-MS), we identified the modified RNA base 3-(3-amino-3-carboxypropyl)uridine (acp3U) as a site of attachment of N-glycans in glycoRNA. rPAL offers sensitivity and robustness as an approach for characterizing direct glycan-RNA linkages occurring in cells, and its flexibility will enable further exploration of glycoRNA biology.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39175167

RESUMO

Mate choice, and sex differences in romantic behaviours, represented one of the first major applications of evolutionary biology to human behaviour. This paper reviews Darwinian approaches to heterosexual mate assessment based on physical characteristics, placing the literature in its historical context (1871-1979), before turning (predominantly) to psychological research on attractiveness judgements based on physical characteristics. Attractiveness is consistently inferred across multiple modalities, with biological theories explaining why we differentiate certain individuals, on average, from others. Simultaneously, it is a judgement that varies systematically in light of our own traits, environment, and experiences. Over 30 years of research has generated robust effects alongside reasons to be humble in our lack of understanding of the precise physiological mechanisms involved in mate assessment. This review concludes with three questions to focus attention in further research, and proposes that our romantic preferences still provide a critical window into the evolution of human sexuality.

3.
Food Chem ; 460(Pt 1): 140400, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39033633

RESUMO

To investigate the impact of low temperature on the quality and flavor of ripe red tomatoes, we analyzed transcriptomes and volatile metabolomes of ripe red fruits stored at 0 °C and 20 °C for 8 days. The results showed that 0 °C maintained the sugar content by increasing the expression of sucrose synthetase (SUS) and sucrose transporter (SUT). Low expression of aroma synthesis-related genes, such as alcohol dehydrogenase 1 (ADH1), amino acid decarboxylase 1 A (AADC1A), and branched-chain amino acid aminotransferase 2 (BCAT2), were associated with reduced levels of pentanal, hexanal, 3-methylbutanal, 2-methylbutanal, and 2-phenylethanol. Additionally, the expression of pectinesterase (PE), beta-galactosidase (ß-GAL), and beta-glucosidase (ß-Glu), as well as phytoene synthase1 (PSY1) involved in carotenoid synthesis, was inhibited, thereby maintaining fruits texture and color. Furthermore, storage at 0 °C induced the expression of numerous genes regulating antioxidant and heat shock proteins, which further preserved the postharvest quality of tomatoes.

4.
J Adv Res ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38199454

RESUMO

INTRODUCTION: Apricot (Prunus armeniaca L.) fruits are highly perishable and prone to quality deterioration during storage and transportation. OBJECTIVES: To investigate the effects of LED white light treatment on postharvest ripening of fruits using metabolomics, transcriptomics, and ATAC-Seq analysis. METHODS: Fruits were exposed to 5 µmol m-2 s-1 LED white light for 12 h followed by 12 h of darkness at 20 °C daily for 12 days. The effects of the treatments on the physiological and nutritional quality of the fruits were evaluated. These data were combined with transcriptomic, metabolomic, and ATAC-Seq data from fruits taken on 8 d of treatment to provide insight into the potential mechanism by which LED treatment delays ripening. RESULTS: LED treatment activated pathways involved in ascorbate and aldarate metabolism and flavonoid and phenylpropanoid biosynthesis. Specifically, LED treatment increased the expression of UDP-sugar pyrophosphorylase (USP), L-ascorbate peroxidase (AO), dihydroflavonol 4-reductase (DFR), chalcone synthase (CHS), and caffeoyl-CoA O-methyltransferase (CCOAOMT1), leading to the accumulation of caffeoyl quinic acid, epigallocatechin, and dihydroquercetin and the activation of anthocyanin biosynthesis. LED treatment also affected the expression of genes associated with plant hormone signal transduction, fruit texture and color transformation, and antioxidant activity. The notable genes affected by LED treatment included 1-aminocyclopropane-1-carboxylate synthase (ACS), 1-aminocyclopropane-1-carboxylate oxidase (ACO), hexokinase (HK), lipoxygenase (LOX), malate dehydrogenase (MDH), endoglucanase (CEL), various transcription factors (TCP, MYB, EFR), and peroxidase (POD). ATAC-Seq analysis further revealed that LED treatment primarily regulated phenylpropanoid biosynthesis. CONCLUSION: The results obtained in this study provide insights into the effects of LED light exposure on apricot fruits ripening. LEDs offer a promising approach for extending the shelf life of other fruits and vegetables.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA