Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Dev Biol ; 306(2): 810-23, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17449025

RESUMO

Dlk1 and Gtl2 are reciprocally imprinted neighboring genes located within a 1 Mb imprinted domain on murine distal chromosome 12. The two genes are expressed and developmentally regulated during mammalian embryogenesis. Dlk1/Pref1 encodes a transmembrane protein with homology to members of the Notch/Delta developmental signaling pathway and Gtl2 generates alternatively spliced poly-adenylated transcripts lacking a conserved open reading frame. An intergenic differentially methylated region (IG-DMR) located 13 kb upstream of Gtl2 has been shown to regulate imprinting throughout the domain by an as yet unknown mechanism. In order to gain insights into regulation at this domain and to compare it with imprinting control at other loci, we compared the expression profile of Dlk1 with Gtl2 during mouse embryogenesis in normal conceptuses and in those with uniparental disomy for chromosome 12. The expression profile of these genes suggests a causative role for Dlk1 and Gtl2 in the pathologies found in uniparental disomy animals, characterized by defects in skeletal muscle maturation, bone formation, placenta size and organization and prenatal lethality. Here, we show restricted overlap in cellular expression of these two genes throughout development. Dlk1 is imprinted and expressed in cell types within the lung, liver and placenta where Gtl2 is not expressed. Gtl2 is highly expressed in the central nervous system (CNS), whereas Dlk1 is found localized to specific regions such as the hypothalamus. Co-expression is observed in most of the mesodermal-derived tissues, notably the skeletal muscle where both genes are strongly co-expressed. In this tissue, Dlk1 shows a relaxation of imprinting with some expression from the maternal allele. These findings indicate that the general mechanism of imprinting at the stages analyzed is not through the co-ordinate non-coding RNA or insulator mechanisms observed for other imprinted domains, and suggest that the two genes have independent tissue-specific functions.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteínas/genética , Proteínas/fisiologia , Processamento Alternativo , Animais , Proteínas de Ligação ao Cálcio , Endoderma/metabolismo , Regulação da Expressão Gênica , Impressão Genômica , Genótipo , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mesoderma/metabolismo , Camundongos , Placenta/metabolismo , RNA Longo não Codificante , RNA não Traduzido/metabolismo , Dissomia Uniparental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA