Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1849: 17-27, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30298245

RESUMO

There are a number of options available to researchers who wish to collect and analyze viral metagenomes (viromes) from environmental samples. Here we describe a laboratory procedure for generation of viromes from freshwater samples, specifically targeting dsDNA bacteriophages. We also discuss methods for bioinformatic analysis of the resulting data.


Assuntos
Bacteriófagos/genética , Monitoramento Ambiental/métodos , Água Doce/virologia , Genoma Viral , Metagenômica/métodos , Biologia Computacional , Filogenia
2.
Viruses ; 10(6)2018 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-29914169

RESUMO

Despite the abundance, ubiquity and impact of environmental viruses, their inherent genomic plasticity and extreme diversity pose significant challenges for the examination of bacteriophages on Earth. Viral metagenomic studies have offered insight into broader aspects of phage ecology and repeatedly uncover genes to which we are currently unable to assign function. A combined effort of phage isolation and metagenomic survey of Chicago’s nearshore waters of Lake Michigan revealed the presence of Pbunaviruses, relatives of the Pseudomonas phage PB1. This prompted our expansive investigation of PB1-like phages. Genomic signatures of PB1-like phages and Pbunaviruses were identified, permitting the unambiguous distinction between the presence/absence of these phages in soils, freshwater and wastewater samples, as well as publicly available viral metagenomic datasets. This bioinformatic analysis led to the de novo assembly of nine novel PB1-like phage genomes from a metagenomic survey of samples collected from Lake Michigan. While this study finds that Pbunaviruses are abundant in various environments of Northern Illinois, genomic variation also exists to a considerable extent within individual communities.


Assuntos
Variação Genética , Genoma Viral , Fagos de Pseudomonas/classificação , Fagos de Pseudomonas/genética , Biologia Computacional , Microbiologia Ambiental , Metagenômica , Fagos de Pseudomonas/isolamento & purificação
3.
PeerJ ; 5: e3281, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28480148

RESUMO

Metagenomics-based studies have provided insight into many of the complex microbial communities responsible for maintaining life on this planet. Sequencing efforts often uncover novel genetic content; this is most evident for phage communities, in which upwards of 90% of all sequences exhibit no similarity to any sequence in current data repositories. For the small fraction that can be identified, the top BLAST hit is generally posited as being representative of a viral taxon present in the sample of origin. Homology-based classification, however, can be misleading as sequence repositories capture but a small fraction of phage diversity. Furthermore, lateral gene transfer is pervasive within phage communities. As such, the presence of a particular gene may not be indicative of the presence of a particular viral species. Rather, it is just that: an indication of the presence of a specific gene. To circumvent this limitation, we have developed a new method for the analysis of viral metagenomic datasets. BLAST hits are weighted, integrating the sequence identity and length of alignments as well as a taxonomic signal, such that each gene is evaluated with respect to its information content. Through this quantifiable metric, predictions of viral community structure can be made with confidence. As a proof-of-concept, the approach presented here was implemented and applied to seven freshwater viral metagenomes. While providing a robust method for evaluating viral metagenomic data, the tool is versatile and can easily be customized to investigations of any environment or biome.

4.
Genome Announc ; 4(6)2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27881533

RESUMO

Recent research has debunked the myth that urine is sterile, having uncovered bacteria within the bladders of healthy individuals. However, the identity, diversity, and putative roles of bacteriophages in the bladder are unknown. We report the draft genome sequences of seven bacteriophages isolated from microbial communities from adult female bladders.

5.
Evol Bioinform Online ; 12(Suppl 1): 25-33, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375355

RESUMO

Advances in bioinformatics and sequencing technologies have allowed for the analysis of complex microbial communities at an unprecedented rate. While much focus is often placed on the cellular members of these communities, viruses play a pivotal role, particularly bacteria-infecting viruses (bacteriophages); phages mediate global biogeochemical processes and drive microbial evolution through bacterial grazing and horizontal gene transfer. Despite their importance and ubiquity in nature, very little is known about the diversity and structure of viral communities. Though the need for culture-based methods for viral identification has been somewhat circumvented through metagenomic techniques, the analysis of metaviromic data is marred with many unique issues. In this review, we examine the current bioinformatic approaches for metavirome analyses and the inherent challenges facing the field as illustrated by the ongoing efforts in the exploration of freshwater phage populations.

6.
Microb Genom ; 2(3): e000053, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-28348848

RESUMO

Obtaining meaningful viral information from large sequencing datasets presents unique challenges distinct from prokaryotic and eukaryotic sequencing efforts. The difficulties surrounding this issue can be ascribed in part to the genomic plasticity of viruses themselves as well as the scarcity of existing information in genomic databases. The open-source software PhagePhisher (http://www.putonti-lab.com/phagephisher) has been designed as a simple pipeline to extract relevant information from complex and mixed datasets, and will improve the examination of bacteriophages, viruses, and virally related sequences, in a range of environments. Key aspects of the software include speed and ease of use; PhagePhisher can be used with limited operator knowledge of bioinformatics on a standard workstation. As a proof-of-concept, PhagePhisher was successfully implemented with bacteria-virus mixed samples of varying complexity. Furthermore, viral signals within microbial metagenomic datasets were easily and quickly identified by PhagePhisher, including those from prophages as well as lysogenic phages, an important and often neglected aspect of examining phage populations in the environment. PhagePhisher resolves viral-related sequences which may be obscured by or imbedded in bacterial genomes.


Assuntos
Genoma Viral/genética , Genômica/métodos , Análise de Sequência de DNA/métodos , Software , Bactérias/genética , Bactérias/virologia , Bacteriófagos/genética , Metagenômica , Prófagos/genética
7.
Data Brief ; 5: 305-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26566540

RESUMO

The Chicago area locks separate and control water flow between the freshwaters of Lake Michigan and the network of Illinois waterways. Under extreme storm conditions, however, the locks are opened and storm waters, untreated waste, and runoff are released directly into the lake. These combined sewer overflow (CSO) events introduce microbes, viruses, and nutrients such as nitrogen and phosphorous into nearshore waters which likely affect the native species. We collected surface water samples from four Chicago area beaches - Gillson Park, Montrose Beach, 57th Street Beach, and Calumet Beach - every two weeks from May 13 through August 5, 2014. Sampling was conducted with four biological replicates for each sampling date and location, resulting in 112 samples. Each community was surveyed through targeted sequencing of the V4 16S rRNA gene. Technical replicates were also sequenced and are included in this dataset. Taxa were identified using Mothur. Raw sequence data is available via NCBI׳s SRA database (part of BioProject PRJNA245802).

8.
Virol J ; 12: 164, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26453042

RESUMO

BACKGROUND: The study of bacteriophages continues to generate key information about microbial interactions in the environment. Many phenotypic characteristics of bacteriophages cannot be examined by sequencing alone, further highlighting the necessity for isolation and examination of phages from environmental samples. While much of our current knowledge base has been generated by the study of marine phages, freshwater viruses are understudied in comparison. Our group has previously conducted metagenomics-based studies samples collected from Lake Michigan - the data presented in this study relate to four phages that were extracted from the same samples. FINDINGS: Four phages were extracted from Lake Michigan on the same bacterial host, exhibiting similar morphological characteristics as shown under transmission electron microscopy. Growth characteristics of the phages were unique to each isolate. Each phage demonstrated a host-range spanning several phyla of bacteria - to date, such a broad host-range is yet to be reported. Genomic data reveals genomes of a similar size, and close similarities between the Lake Michigan phages and the Pseudomonas phage PB1, however, the majority of annotated genes present were ORFans and little insight was offered into mechanisms for host-range. CONCLUSIONS: The phages isolated from Lake Michigan are capable of infecting several bacterial phyla, and demonstrate varied phenotypic characteristics despite similarities in host preference, and at the genomic level. We propose that such a broad host-range is likely related to the oligotrophic nature of Lake Michigan, and the competitive benefit that this characteristic may lend to phages in nature.


Assuntos
Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Especificidade de Hospedeiro , Lagos/virologia , Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/ultraestrutura , DNA Viral/química , DNA Viral/genética , Michigan , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Análise de Sequência de DNA , Vírion/ultraestrutura
9.
Data Brief ; 5: 9-12, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26380839

RESUMO

In comparison to the oceans, freshwater environments represent a more diverse community of microorganisms, exhibiting comparatively high levels of variability both temporally and spatially Maranger and Bird, Microb. Ecol. 31 (1996) 141-151. This level of variability is likely to extend to the world of viruses as well, in particular bacteria-infecting viruses (bacteriophages). Phages are known to influence bacterial diversity, and therefore key processes, in environmental niches across the globe Clokie et al., Bacteriophage 1 (2011) 31-45; Jacquet et al., Adv. Ocean Limn. 1 (2010) 97-141; Wilhelm and Suttle, Bioscience 49 (1999) 781-788; Bratback et al., Microb. Ecol. 28 (1994) 209-221. Despite their prevalence and likely critical role in freshwater environments, very few viral species have been characterized. Metagenomic approaches, however, have allowed for a glimpse into phage diversity. We collected surface water samples from four Chicago area beaches - Gillson Park, Montrose Beach, 57th Street Beach, and Calumet Beach - every two weeks from May 13 through August 5, 2014. Sampling was conducted with four biological replicates for each sampling date and location, resulting in 112 samples. DNA isolated from each of the individual samples for a given collection date/location was pooled together, with one exception - Calumet Beach on August 5, 2014 - in which each biological replicate was sequenced individually. Raw sequence data is available via NCBI's SRA database (part of BioProject PRJNA248239).

10.
PLoS One ; 9(1): e87339, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489900

RESUMO

Freshwater cyanophages are poorly characterised in comparison to their marine counterparts, however, the level of genetic diversity that exists in freshwater cyanophage communities is likely to exceed that found in marine environments, due to the habitat heterogeneity within freshwater systems. Many cyanophages are specialists, infecting a single host species or strain; however, some are less fastidious and infect a number of different host genotypes within the same species or even hosts from different genera. Few instances of host growth characterisation after infection by broad host-range phages have been described. Here we provide an initial characterisation of interactions between a cyanophage isolated from a freshwater fishing lake in the south of England and its hosts. Designated ΦMHI42, the phage is able to infect isolates from two genera of freshwater cyanobacteria, Planktothrix and Microcystis. Transmission Electron Microscopy and Atomic Force Microscopy indicate that ΦMHI42 is a member of the Podoviridae, albeit with a larger than expected capsid. The kinetics of host growth after infection with ΦMHI42 differed across host genera, species and strains in a way that was not related to the growth rate of the uninfected host. To our knowledge, this is the first characterisation of the growth of cyanobacteria in the presence of a broad host-range freshwater cyanophage.


Assuntos
Microcystis/crescimento & desenvolvimento , Podoviridae/fisiologia , Microbiologia da Água , Água Doce/virologia , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Microcystis/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA