Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39282406

RESUMO

Viruses have evolved myriad strategies to exploit the translation machinery of host cells to potentiate their replication. However, how paramyxovirus (PMVs) modulate cellular translation for their own benefit has not been systematically examined. Utilizing puromycylation labeling, overexpression of individual viral genes, and infection with wild-type virus versus its gene-deleted counterpart, we found that PMVs significantly inhibit host cells' nascent peptide synthesis during infection, with the viral matrix being the primary contributor to this effect. Using the rNiV-NPL replicon system, we discovered that the viral matrix enhances viral protein translation without affecting viral mRNA transcription and suppresses host protein expression at the translational level. Polysome profile analysis revealed that the HPIV3 matrix promotes the association of viral mRNAs with ribosomes, thereby enhancing their translation efficiency during infection. Intriguingly, our NiV-Matrix interactome identified the core exon-junction complex (cEJC), critical for mRNA biogenesis, as a significant component that interacts with the paramyxoviral matrix predominantly in the cytoplasm. siRNA knockdown of eIF4AIII simulated the restriction of cellular functions by the viral matrix, leading to enhanced viral gene translation and a reduction in host protein synthesis. Moreover, siRNA depletion of cEJC resulted in a 2-3 log enhancement in infectious virus titer for various PMVs but not SARS-CoV-2, enterovirus D68, or influenza virus. Our findings characterize a host translational interference mechanism mediated by viral matrix and host cEJC interactions. We propose that the PMV matrix redirects ribosomes to translate viral mRNAs at the expense of host cell transcripts, enhancing viral replication, and thereby enhancing viral replication. These insights provide a deeper understanding of the molecular interactions between paramyxoviruses and host cells, highlighting potential targets for antiviral strategies.

2.
BMC Med ; 19(1): 275, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663326

RESUMO

BACKGROUND: The BNT162b2 mRNA vaccine has been shown to be effective at preventing serious COVID-19 events in clinical trials. There is less evidence on effectiveness in real-world settings, especially for older people. Here, we aimed to estimate vaccine effectiveness in the context of the rapid NHS mass-vaccination programme in England, exploiting age-based vaccination eligibility thresholds to minimise and correct for selection bias. METHODS: We studied 170,226 individuals between the ages of 80 and 83 years from community settings outside care homes who received one dose of BNT162b2 mRNA between the 15 and 20 December 2020 and were scheduled a second dose 21 days later. We matched these vaccine recipients to slightly younger (aged 76-79 years) persons not yet eligible to receive the vaccine on gender, area of residence, area deprivation, health status, living arrangements, acute illness, and history of seasonal flu vaccination. We compared their rates of COVID-19 positivity and hospitalisation in the subsequent 45 days. We adjusted for the increasing concentration of COVID-19 positivity in the control population caused by the requirement to have no COVID-19 symptoms prior to vaccination. RESULTS: Emergency hospital admissions were 51.0% (95% confidence interval 19.9 to 69.5%) lower and positive COVID-19 tests were 55.2% (40.8 to 66.8%) lower for vaccinated individuals compared to matched controls 21 to 27 days after first vaccination. Emergency admissions were 75.6% (52.8 to 87.6%) lower, and positive COVID-19 tests were 70.1% (55.1 to 80.1%) lower 35 to 41 days after first vaccination when 79% of participants had received a second dose within 26 days of their first dose. CONCLUSIONS: Receipt of the BNT162b2 mRNA vaccine is effective at reducing COVID-19 hospitalisations and infections. The nationwide vaccination of older adults in England with the BNT162b2 mRNA vaccine reduced the burden of COVID-19.


Assuntos
COVID-19 , Vacinas contra Influenza , Idoso , Idoso de 80 Anos ou mais , Vacina BNT162 , Vacinas contra COVID-19 , Estudos de Casos e Controles , Inglaterra/epidemiologia , Hospitalização , Humanos , Vacinação em Massa , RNA Mensageiro , SARS-CoV-2
3.
Cell Stem Cell ; 28(5): 833-845.e5, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33513358

RESUMO

Severe congenital neutropenia (SCN) is a life-threatening disorder most often caused by dominant mutations of ELANE that interfere with neutrophil maturation. We conducted a pooled CRISPR screen in human hematopoietic stem and progenitor cells (HSPCs) that correlated ELANE mutations with neutrophil maturation potential. Highly efficient gene editing of early exons elicited nonsense-mediated decay (NMD), overcame neutrophil maturation arrest in HSPCs from ELANE-mutant SCN patients, and produced normal hematopoietic engraftment function. Conversely, terminal exon frameshift alleles that mimic SCN-associated mutations escaped NMD, recapitulated neutrophil maturation arrest, and established an animal model of ELANE-mutant SCN. Surprisingly, only -1 frame insertions or deletions (indels) impeded neutrophil maturation, whereas -2 frame late exon indels repressed translation and supported neutrophil maturation. Gene editing of primary HSPCs allowed faithful identification of variant pathogenicity to clarify molecular mechanisms of disease and encourage a universal therapeutic approach to ELANE-mutant neutropenia, returning normal neutrophil production and preserving HSPC function.


Assuntos
Elastase de Leucócito , Neutropenia , Animais , Síndrome Congênita de Insuficiência da Medula Óssea , Edição de Genes , Humanos , Elastase de Leucócito/genética , Mutação/genética , Neutropenia/genética , Virulência
4.
Nat Microbiol ; 5(10): 1232-1246, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32661315

RESUMO

Paramyxoviruses such as human parainfluenza virus type-3 (HPIV3) and measles virus (MeV) are a substantial health threat. In a high-throughput screen for inhibitors of HPIV3 (a major cause of acute respiratory infection), we identified GHP-88309-a non-nucleoside inhibitor of viral polymerase activity that possesses unusual broad-spectrum activity against diverse paramyxoviruses including respiroviruses (that is, HPIV1 and HPIV3) and morbilliviruses (that is, MeV). Resistance profiles of distinct target viruses overlapped spatially, revealing a conserved binding site in the central cavity of the viral polymerase (L) protein that was validated by photoaffinity labelling-based target mapping. Mechanistic characterization through viral RNA profiling and in vitro MeV polymerase assays identified a block in the initiation phase of the viral polymerase. GHP-88309 showed nanomolar potency against HPIV3 isolates in well-differentiated human airway organoid cultures, was well tolerated (selectivity index > 7,111) and orally bioavailable, and provided complete protection against lethal infection in a Sendai virus mouse surrogate model of human HPIV3 disease when administered therapeutically 48 h after infection. Recoverees had acquired robust immunoprotection against reinfection, and viral resistance coincided with severe attenuation. This study provides proof of the feasibility of a well-behaved broad-spectrum allosteric antiviral and describes a chemotype with high therapeutic potential that addresses major obstacles of anti-paramyxovirus drug development.


Assuntos
Antivirais/química , Antivirais/farmacologia , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Respirovirus/efeitos dos fármacos , Respirovirus/enzimologia , Imunidade Adaptativa , Administração Oral , Regulação Alostérica , Animais , Antivirais/administração & dosagem , Linhagem Celular , Inibidores Enzimáticos/administração & dosagem , Humanos , Imuno-Histoquímica , Camundongos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Mucosa Respiratória/virologia , Respirovirus/imunologia , Relação Estrutura-Atividade
6.
Adv Virus Res ; 98: 1-55, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28433050

RESUMO

The risk of spillover of enzootic paramyxoviruses and the susceptibility of recipient human and domestic animal populations are defined by a broad collection of ecological and molecular factors that interact in ways that are not yet fully understood. Nipah and Hendra viruses were the first highly lethal zoonotic paramyxoviruses discovered in modern times, but other paramyxoviruses from multiple genera are present in bats and other reservoirs that have unknown potential to spillover into humans. We outline our current understanding of paramyxovirus reservoir hosts and the ecological factors that may drive spillover, and we explore the molecular barriers to spillover that emergent paramyxoviruses may encounter. By outlining what is known about enzootic paramyxovirus receptor usage, mechanisms of innate immune evasion, and other host-specific interactions, we highlight the breadth of unexplored avenues that may be important in understanding paramyxovirus emergence.


Assuntos
Resistência à Doença/genética , Infecções por Paramyxoviridae/epidemiologia , Paramyxovirinae/patogenicidade , Filogenia , Zoonoses/epidemiologia , Animais , Gatos , Quirópteros/virologia , Suscetibilidade a Doenças/imunologia , Vetores de Doenças , Cães , Interações Hospedeiro-Patógeno , Humanos , Infecções por Paramyxoviridae/imunologia , Infecções por Paramyxoviridae/transmissão , Infecções por Paramyxoviridae/veterinária , Paramyxovirinae/classificação , Paramyxovirinae/genética , Roedores/virologia , Zoonoses/imunologia , Zoonoses/transmissão , Zoonoses/virologia
7.
Sci Rep ; 6: 37457, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27881870

RESUMO

During infection with non-enveloped viruses, antibodies stimulate immunity from inside cells by activating the cytosolic Fc receptor TRIM21. This intracellular humoral response relies on opsonized viral particles reaching the cytosol intact but the antigenic and kinetic constraints involved are unknown. We have solved the structure of a potent TRIM21-dependent neutralizing antibody in complex with human adenovirus 5 hexon and show how these properties influence immune activity. Structure-guided mutagenesis was used to generate antibodies with 20,000-fold variation in affinity, on-rates that differ by ~50-fold and off-rates by >175-fold. Characterization of these variants during infection revealed that TRIM21-dependent neutralization and NFκB activation was largely unaffected by on-rate kinetics. In contrast, TRIM21 antiviral activity was exquisitely dependent upon off-rate, with sub-µM affinity antibodies nevertheless unable to stimulate signaling because of fast dissociation kinetics. These results define the antibody properties required to elicit an efficient intracellular immune response during viral infection.


Assuntos
Adenovírus Humanos/química , Anticorpos Neutralizantes/química , Antígenos Virais/química , Imunidade Humoral/efeitos dos fármacos , Fragmentos Fab das Imunoglobulinas/química , Ribonucleoproteínas/química , Adenovírus Humanos/crescimento & desenvolvimento , Adenovírus Humanos/imunologia , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/imunologia , Afinidade de Anticorpos , Antígenos Virais/genética , Antígenos Virais/imunologia , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HEK293 , Humanos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/imunologia , Cinética , Modelos Moleculares , NF-kappa B/farmacologia , Testes de Neutralização , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Ribonucleoproteínas/genética , Ribonucleoproteínas/imunologia , Relação Estrutura-Atividade
8.
FEBS Lett ; 590(15): 2494-511, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27350027

RESUMO

Nipah virus (NiV, Henipavirus) is a highly lethal emergent zoonotic paramyxovirus responsible for repeated human outbreaks of encephalitis in South East Asia. There are no approved vaccines or treatments, thus improved understanding of NiV biology is imperative. NiV matrix protein recruits a plethora of cellular machinery to scaffold and coordinate virion budding. Intriguingly, matrix also hijacks cellular trafficking and ubiquitination pathways to facilitate transient nuclear localization. While the biological significance of matrix nuclear localization for an otherwise cytoplasmic virus remains enigmatic, the molecular details have begun to be characterized, and are conserved among matrix proteins from divergent paramyxoviruses. Matrix protein appropriation of cellular machinery will be discussed in terms of its early nuclear targeting and later role in virion assembly.


Assuntos
Encefalite/genética , Vírus Nipah/genética , Proteínas da Matriz Viral/genética , Vírion/genética , Animais , Citoplasma/genética , Citoplasma/virologia , Surtos de Doenças , Encefalite/virologia , Humanos , Vírus Nipah/crescimento & desenvolvimento , Vírus Nipah/patogenicidade , Montagem de Vírus/genética
9.
J Immunol ; 196(8): 3452-3459, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26962230

RESUMO

Ab-coated viruses can be detected in the cytosol by the FcR tripartite motif-containing 21 (TRIM21), which rapidly recruits the proteasomal machinery and triggers induction of immune signaling. As such, TRIM21 plays a key role in intracellular protection by targeting invading viruses for destruction and alerting the immune system. A hallmark of immunity is elicitation of a balanced response that is proportionate to the threat, to avoid unnecessary inflammation. In this article, we show how Ab affinity modulates TRIM21 immune function. We constructed a humanized monoclonal IgG1 against human adenovirus type 5 (AdV5) and a panel of Fc-engineered variants with a wide range of affinities for TRIM21. We found that IgG1-coated viral particles were neutralized via TRIM21, even when affinity was reduced by as much as 100-fold. In contrast, induction of NF-κB signaling was more sensitive to reduced affinity between TRIM21 and the Ab variants. Thus, TRIM21 mediates neutralization under suboptimal conditions, whereas induction of immune signaling is balanced according to the functional affinity for the incoming immune stimuli. Our findings have implications for engineering of antiviral IgG therapeutics with tailored effector functions.


Assuntos
Adenovírus Humanos/imunologia , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Neutralizantes/imunologia , Afinidade de Anticorpos/imunologia , Imunoglobulina G/imunologia , Ribonucleoproteínas/imunologia , Animais , Linhagem Celular , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/imunologia , Testes de Neutralização , Ribonucleoproteínas/genética , Transdução de Sinais/imunologia , Ressonância de Plasmônio de Superfície
10.
PLoS Pathog ; 11(10): e1005253, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26506431

RESUMO

Encapsidation is a strategy almost universally employed by viruses to protect their genomes from degradation and from innate immune sensors. We show that TRIM21, which targets antibody-opsonized virions for proteasomal destruction, circumvents this protection, enabling the rapid detection and degradation of viral genomes before their replication. TRIM21 triggers an initial wave of cytokine transcription that is antibody, rather than pathogen, driven. This early response is augmented by a second transcriptional program, determined by the nature of the infecting virus. In this second response, TRIM21-induced exposure of the viral genome promotes sensing of DNA and RNA viruses by cGAS and RIG-I. This mechanism allows early detection of an infection event and drives an inflammatory response in mice within hours of viral challenge.


Assuntos
RNA Helicases DEAD-box/fisiologia , Genoma Viral , Nucleotidiltransferases/fisiologia , Fagocitose , Ribonucleoproteínas/fisiologia , Viroses/imunologia , Infecções por Adenovirus Humanos/imunologia , Animais , Proteína DEAD-box 58 , Células HeLa , Humanos , Imunidade Inata , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Picornaviridae/imunologia , Receptores Imunológicos , Rhinovirus
11.
Proc Natl Acad Sci U S A ; 112(32): 10014-9, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26150489

RESUMO

Tripartite motif (TRIM) 21 is a cytosolic antibody receptor that neutralizes antibody-coated viruses that penetrate the cell and simultaneously activates innate immunity. Here we show that the conjugation of TRIM21 with K63-linked ubiquitin (Ub-(63)Ub) catalyzed by the sequential activity of nonredundant E2 Ub enzymes is required for its dual antiviral functions. TRIM21 is first labeled with monoubiquitin (monoUb) by the E2 Ube2W. The monoUb is a substrate for the heterodimeric E2 Ube2N/Ube2V2, resulting in TRIM21-anchored Ub-(63)Ub. Depletion of either E2 abolishes Ub-(63)Ub and Ub-(48)Ub conjugation of TRIM21, NF-κB signaling, and virus neutralization. The formation of TRIM21-Ub-(63)Ub precedes proteasome recruitment, and we identify an essential role for the 19S-resident and degradation-coupled deubiquitinase Poh1 in TRIM21 neutralization, signaling, and cytokine induction. This study elucidates a complex mechanism of step-wise ubiquitination and deubiquitination activities that allows contemporaneous innate immune signaling and neutralization by TRIM21.


Assuntos
Ribonucleoproteínas/metabolismo , Ubiquitinação , Animais , Linhagem Celular , Citocinas/genética , Humanos , Lisina/metabolismo , Camundongos , Modelos Biológicos , NF-kappa B/metabolismo , Testes de Neutralização , Poliubiquitina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais , Especificidade por Substrato , Transativadores/metabolismo , Transcrição Gênica , Enzimas de Conjugação de Ubiquitina/metabolismo
12.
J Clin Immunol ; 34 Suppl 1: S30-4, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24722852

RESUMO

Antibodies allow the immune system to target pathogens despite their tremendous diversity and rapid evolution. Once bound to a pathogen, antibodies induce a broad range of effector mechanisms, including phagocytosis and complement. However, these mechanisms are all initiated in the extracellular space, meaning that pathogens like viruses evade them upon infection of their target cells. Recently, it has been shown that, in addition to mediating extracellular immune responses, antibodies also activate immunity inside infected cells. Antibodies that are bound to the surface of non-enveloped viruses or bacteria are carried into the cell during pathogen entry. Once inside the cell, these pathogen-attached antibodies are recognised by a highly conserved, high affinity cytosolic antibody receptor called TRIM21. TRIM21 initiates both sensor and effector responses that reduce viral replication and induce an antiviral state. These responses are an important part of antiviral immunity and the removal of TRIM21 results in uncontrolled viraemia and death in a mouse model of infection.


Assuntos
Complexo Antígeno-Anticorpo/metabolismo , Imunidade Humoral , Infecções/imunologia , Espaço Intracelular , Ribonucleoproteínas/metabolismo , Animais , Antígenos de Bactérias/metabolismo , Antígenos Virais/metabolismo , Modelos Animais de Doenças , Humanos , Espaço Intracelular/imunologia , Camundongos , Camundongos Knockout , Ribonucleoproteínas/genética
13.
Proc Natl Acad Sci U S A ; 110(30): 12397-401, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23840060

RESUMO

Host species have evolved mechanisms that can inhibit pathogen replication even after a cell has been successfully invaded. Here we show that tripartite-motif protein 21 (TRIM21), a ubiquitously expressed E3 ubiquitin ligase that targets viruses inside the cytosol, protects mice against fatal viral infection. Upon infection with mouse adenovirus-1, naive mice lacking TRIM21 succumb to encephalomyelitis within 7 d. In contrast, wild-type mice rapidly up-regulate TRIM21 and control viremia. Trim21 heterozygous mice have a haploinsufficiency phenotype in which reduced TRIM21 expression leads to a viral load that is higher than wild types but lower than knockouts. TRIM21 is a high-affinity antibody receptor that allows antibodies to operate inside an infected cell. In passive transfer experiments at high viral dose, antisera that fully protects wild-type mice fails to protect most Trim21 knockout animals. These results demonstrate that TRIM21 provides potent antiviral protection and forms an important part of the humoral immune response.


Assuntos
Ribonucleoproteínas/fisiologia , Viroses/prevenção & controle , Animais , Ensaio de Imunoadsorção Enzimática , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase , Ribonucleoproteínas/genética , Viroses/mortalidade
14.
Nat Immunol ; 14(4): 327-36, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23455675

RESUMO

During pathogen infection, antibodies can be carried into the infected cell, where they are detected by the ubiquitously expressed cytosolic antibody receptor TRIM21. Here we found that recognition of intracellular antibodies by TRIM21 activated immune signaling. TRIM21 catalyzed the formation of Lys63 (K63)-linked ubiquitin chains and stimulated the transcription factor pathways of NF-κB, AP-1, IRF3, IRF5 and IRF7. Activation resulted in the production of proinflammatory cytokines, modulation of natural killer stress ligands and induction of an antiviral state. Intracellular antibody signaling was abrogated by genetic deletion of TRIM21 and was restored by ectopic expression of TRIM21. The sensing of antibodies by TRIM21 was stimulated after infection by DNA or RNA nonenveloped viruses or intracellular bacteria. Thus, the antibody-TRIM21 detection system provides potent, comprehensive activation of the innate immune system independently of known pattern-recognition receptors.


Assuntos
Anticorpos Antivirais/imunologia , Espaço Intracelular/imunologia , Espaço Intracelular/metabolismo , Receptores Fc/metabolismo , Ribonucleoproteínas/imunologia , Transdução de Sinais , Vírus/imunologia , Adenoviridae/imunologia , Animais , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Complexo Antígeno-Anticorpo/imunologia , Complexo Antígeno-Anticorpo/metabolismo , Bactérias/imunologia , Linhagem Celular , Reações Cruzadas , Citocinas/biossíntese , Humanos , Mediadores da Inflamação/metabolismo , Fatores Reguladores de Interferon/metabolismo , Camundongos , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores de Reconhecimento de Padrão/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Fator de Transcrição AP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA