Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(6): e17344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38837566

RESUMO

Hosting 1460 plant and 126 vertebrate endemic species, the Great Escarpment (hereafter, Escarpment) forms a semi-circular "amphitheater" of mountains girdling southern Africa from arid west to temperate east. Since arid and temperate biota are usually studied separately, earlier studies overlooked the biogeographical importance of the Escarpment as a whole. Bats disperse more widely than other mammalian taxa, with related species and intraspecific lineages occupying both arid and temperate highlands of the Escarpment, providing an excellent model to address this knowledge gap. We investigated patterns of speciation and micro-endemism from modeled past, present, and future distributions in six clades of southern African bats from three families (Rhinolophidae, Cistugidae, and Vespertilionidae) having different crown ages (Pleistocene to Miocene) and biome affiliations (temperate to arid). We estimated mtDNA relaxed clock dates of key divergence events across the six clades in relation both to biogeographical features and patterns of phenotypic variation in crania, bacula and echolocation calls. In horseshoe bats (Rhinolophidae), both the western and eastern "arms" of the Escarpment have facilitated dispersals from the Afrotropics into southern Africa. Pleistocene and pre-Pleistocene "species pumps" and temperate refugia explained observed patterns of speciation, intraspecific divergence and, in two cases, mtDNA introgression. The Maloti-Drakensberg is a center of micro-endemism for bats, housing three newly described or undescribed species. Vicariance across biogeographic barriers gave rise to 29 micro-endemic species and intraspecific lineages whose distributions were congruent with those identified in other phytogeographic and zoogeographic studies. Although Köppen-Geiger climate models predict a widespread replacement of current temperate ecosystems in southern Africa by tropical or arid ecosystems by 2070-2100, future climate Maxent models for 13 bat species (all but one of those analyzed above) showed minimal range changes in temperate species from the eastern Escarpment by 2070, possibly due to the buffering effect of mountains to climate change.


Assuntos
Quirópteros , Mudança Climática , DNA Mitocondrial , Animais , Quirópteros/fisiologia , Quirópteros/genética , África Austral , DNA Mitocondrial/genética , DNA Mitocondrial/análise , Filogenia , Especiação Genética , Filogeografia , Distribuição Animal
2.
PLoS One ; 10(2): e0117750, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25693176

RESUMO

Coexistence often involves niche differentiation either as the result of environmental divergence, or in response to competition. Disentangling the causes of such divergence requires that environmental variation across space is taken into account, which is rarely done in empirical studies. We address the role of environmental variation versus competition in coexistence between two rodent species: Rhabdomys bechuanae (bechuanae) and Rhabdomys dilectus dilectus (dilectus) comparing their habitat preference and home range (HR) size in areas with similar climates, where their distributions abut (allopatry) or overlap (sympatry). Using Outlying Mean Index analyses, we test whether habitat characteristics of the species deviate significantly from a random sample of available habitats. In allopatry, results suggest habitat selection: dilectus preferring grasslands with little bare soil while bechuanae occurring in open shrublands. In sympatry, shrubland type habitats dominate and differences are less marked, yet dilectus selects habitats with more cover than bechuanae. Interestingly, bechuanae shows larger HRs than dilectus, and both species display larger HRs in sympatry. Further, HR overlaps between species are lower than expected. We discuss our results in light of data on the phylogeography of the genus and propose that evolution in allopatry resulted in adaptation leading to different habitat preferences, even at their distribution margins, a divergence expected to facilitate coexistence. However, since sympatry occurs in sites where environmental characteristics do not allow complete species separation, competition may explain reduced inter-species overlap and character displacement in HR size. This study reveals that both environmental variation and competition may shape species coexistence.


Assuntos
Ecossistema , Murinae/fisiologia , Adaptação Fisiológica , Animais , Comportamento de Retorno ao Território Vital , Murinae/genética , Simpatria
3.
Chromosome Res ; 18(5): 563-74, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20582567

RESUMO

The African pygmy mouse, Mus minutoides, displays extensive Robertsonian (Rb) diversity. The two extremes of the karyotypic range are found in South Africa, with populations carrying 2n = 34 and 2n = 18. In order to reconstruct the scenario of chromosomal evolution of M. minutoides and test the performance of Rb fusions in resolving fine-scale phylogenetic relationships, we first describe new karyotypes, and then perform phylogenetic analyses by two independent methods, using respectively mitochondrial cytochrome b sequences and chromosomal rearrangements as markers. The molecular and chromosomal phylogenies were in perfect congruence, providing strong confidence both for the tree topology and the chronology of chromosomal rearrangements. The analysis supports a division of South African specimens into two clades showing opposite trends of chromosomal evolution, one containing all specimens with 34 chromosomes (karyotypic stasis) and the other grouping all mice with 18 chromosomes that have further diversified by the fixation of different Rb fusions (extensive karyotypic reshuffling). The results confirm that Rb fusions are by far the predominant rearrangement in M. minutoides but strongly suggest that recurrent whole-arm reciprocal translocations have also shaped this genome.


Assuntos
Cromossomos de Mamíferos/genética , Cariotipagem , Camundongos/genética , Mitocôndrias/genética , Animais , Evolução Biológica , Aberrações Cromossômicas , Filogenia , Translocação Genética
4.
Proc Biol Sci ; 277(1684): 1049-56, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20007182

RESUMO

Therian mammals have an extremely conserved XX/XY sex determination system. A limited number of mammal species have, however, evolved to escape convention and present aberrant sex chromosome complements. In this study, we identified a new case of atypical sex determination in the African pygmy mouse Mus minutoides, a close evolutionary relative of the house mouse. The pygmy mouse is characterized by a very high proportion of XY females (74%, n = 27) from geographically widespread Southern and Eastern African populations. Sequencing of the high mobility group domain of the mammalian sex determining gene Sry, and karyological analyses using fluorescence in situ hybridization and G-banding data, suggest that the sex reversal is most probably not owing to a mutation of Sry, but rather to a chromosomal rearrangement on the X chromosome. In effect, two morphologically different X chromosomes were identified, one of which, designated X*, is invariably associated with sex-reversed females. The asterisk designates the still unknown mutation converting X*Y individuals into females. Although relatively still unexplored, such an atypical sex chromosome system offers a unique opportunity to unravel new genetic interactions involved in the initiation of sex determination in mammals.


Assuntos
Aberrações dos Cromossomos Sexuais , Processos de Determinação Sexual , Cromossomo X/genética , Animais , Cromossomos de Mamíferos/genética , Feminino , Genes sry , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Camundongos , Fenótipo , Filogenia , Análise de Sequência de DNA , Cromossomos Sexuais/genética
5.
Chromosome Res ; 15(2): 223-30, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17285252

RESUMO

Although sex chromosomes are generally the most conserved elements of the mammalian karyotype, those of African pygmy mice show three extraordinary deviations from the norm: (a) asynaptic sex chromosomes, (b) multiple sex-autosome fusions, and (c) modifications of sex determination in some populations/species. In this study we identified, in two sex-reversed females of Mus (Nannomys) minutoides, a fourth rare sex chromosome change: a spontaneous whole-arm reciprocal translocation (WART) between an autosomal Robertsonian pair Rb(13.16) and the sex-autosome fusion Rb(X.1). This represents one of the very few reported cases of WARTs in natura within mammals, and is the first one to involve sex chromosomes. Hence, this finding offers new insights into the mechanisms of chromosomal differentiation in African pygmy mice, as WARTs may have contributed to the extensive diversity not only of autosomal Robertsonian fusions, but also of sex-autosome translocations. More widely, these results provide additional support to previous studies on the house mouse and the common shrew which indirectly inferred the role of WARTs in their karyotypic evolution, and may even help to understand how the fascinating 10 sex chromosome chain of the platypus might have evolved. This accumulation of rare sex chromosome changes in single specimens is, to our knowledge, exceptional among mammals.


Assuntos
Cromossomos de Mamíferos , Camundongos/genética , Cromossomos Sexuais , Translocação Genética , Animais , Evolução Biológica , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA