RESUMO
Global health security is constantly under threat from infectious diseases. Despite advances in biotechnology that have improved diagnosis and treatment of such diseases, delays in detecting outbreaks and the lack of countermeasures for some biological agents continue to pose severe challenges to global health security. In this review, we describe some of the challenges facing global health security and how genome editing technologies can help overcome them. We provide specific examples of how the genome-editing tool CRISPR is being used to develop new tools to characterize pathogenic agents, diagnose infectious disease, and develop vaccines and therapeutics to mitigate the effects of an outbreak. The article also discusses some of the challenges associated with genome-editing technologies and the efforts that scientists are undertaking to mitigate them. Overall, CRISPR and genome-editing technologies are poised to have a significant positive influence on global health security over the years to come.
Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Saúde Global , Edição de GenesRESUMO
The increasing use of CRISPR-Cas9 in medicine, agriculture, and synthetic biology has accelerated the drive to discover new CRISPR-Cas inhibitors as potential mechanisms of control for gene editing applications. Many anti-CRISPRs have been found that inhibit the CRISPR-Cas adaptive immune system. However, comparing all currently known anti-CRISPRs does not reveal a shared set of properties for facile bioinformatic identification of new anti-CRISPR families. Here, we describe AcRanker, a machine learning based method to aid direct identification of new potential anti-CRISPRs using only protein sequence information. Using a training set of known anti-CRISPRs, we built a model based on XGBoost ranking. We then applied AcRanker to predict candidate anti-CRISPRs from predicted prophage regions within self-targeting bacterial genomes and discovered two previously unknown anti-CRISPRs: AcrllA20 (ML1) and AcrIIA21 (ML8). We show that AcrIIA20 strongly inhibits Streptococcus iniae Cas9 (SinCas9) and weakly inhibits Streptococcus pyogenes Cas9 (SpyCas9). We also show that AcrIIA21 inhibits SpyCas9, Streptococcus aureus Cas9 (SauCas9) and SinCas9 with low potency. The addition of AcRanker to the anti-CRISPR discovery toolkit allows researchers to directly rank potential anti-CRISPR candidate genes for increased speed in testing and validation of new anti-CRISPRs. A web server implementation for AcRanker is available online at http://acranker.pythonanywhere.com/.
Assuntos
Proteínas de Bactérias/genética , Proteína 9 Associada à CRISPR/antagonistas & inibidores , Aprendizado de Máquina , Proteínas de Bactérias/química , Prófagos/genética , Proteoma , Análise de Sequência de Proteína , Streptococcus/enzimologia , Streptococcus/genéticaRESUMO
Anti-CRISPRs (Acrs) are small proteins that inhibit the RNA-guided DNA targeting activity of CRISPR-Cas enzymes. Encoded by bacteriophage and phage-derived bacterial genes, Acrs prevent CRISPR-mediated inhibition of phage infection and can also block CRISPR-Cas-mediated genome editing in eukaryotic cells. To identify Acrs capable of inhibiting Staphylococcus aureus Cas9 (SauCas9), an alternative to the most commonly used genome editing protein Streptococcus pyogenes Cas9 (SpyCas9), we used both self-targeting CRISPR screening and guilt-by-association genomic search strategies. Here we describe three potent inhibitors of SauCas9 that we name AcrIIA13, AcrIIA14, and AcrIIA15. These inhibitors share a conserved N-terminal sequence that is dispensable for DNA cleavage inhibition and have divergent C termini that are required in each case for inhibition of SauCas9-catalyzed DNA cleavage. In human cells, we observe robust inhibition of SauCas9-induced genome editing by AcrIIA13 and moderate inhibition by AcrIIA14 and AcrIIA15. We also find that the conserved N-terminal domain of AcrIIA13-AcrIIA15 binds to an inverted repeat sequence in the promoter of these Acr genes, consistent with its predicted helix-turn-helix DNA binding structure. These data demonstrate an effective strategy for Acr discovery and establish AcrIIA13-AcrIIA15 as unique bifunctional inhibitors of SauCas9.
Assuntos
Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR/antagonistas & inibidores , Sistemas CRISPR-Cas , Inibidores Enzimáticos/metabolismo , Staphylococcus/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sequência Conservada , DNA/metabolismo , Edição de Genes , Genoma Bacteriano/genética , Células HEK293 , Humanos , Sequências Repetidas Invertidas , Staphylococcus/química , Staphylococcus aureus/enzimologiaRESUMO
The CRISPR-Cas9 system provides the ability to edit, repress, activate, or mark any gene (or DNA element) by pairing of a programmable single guide RNA (sgRNA) with a complementary sequence on the DNA target. Here we present a new method for small-molecule control of CRISPR-Cas9 function through insertion of RNA aptamers into the sgRNA. We show that CRISPR-Cas9-based gene repression (CRISPRi) can be either activated or deactivated in a dose-dependent fashion over a >10-fold dynamic range in response to two different small-molecule ligands. Since our system acts directly on each target-specific sgRNA, it enables new applications that require differential and opposing temporal control of multiple genes.
Assuntos
Aptâmeros de Nucleotídeos/genética , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , DNA/genética , LigantesRESUMO
Cas12a is a bacterial RNA-guided nuclease used widely for genome editing and, more recently, as a molecular diagnostic. In bacteria, Cas12a enzymes can be inhibited by bacteriophage-derived proteins, anti-CRISPRs (Acrs), to thwart clustered regularly interspaced short palindromic repeat (CRISPR) adaptive immune systems. How these inhibitors disable Cas12a by preventing programmed DNA cleavage is unknown. We show that three such inhibitors (AcrVA1, AcrVA4 and AcrVA5) block Cas12a activity via functionally distinct mechanisms, including a previously unobserved enzymatic strategy. AcrVA4 and AcrVA5 inhibit recognition of double-stranded DNA (dsDNA), with AcrVA4 driving dimerization of Cas12a. In contrast, AcrVA1 is a multiple-turnover inhibitor that triggers cleavage of the target-recognition sequence of the Cas12a-bound guide RNA to irreversibly inactivate the Cas12a complex. These distinct mechanisms equip bacteriophages with tools to evade CRISPR-Cas12a and support biotechnological applications for which multiple-turnover enzymatic inhibition of Cas12a is desirable.
Assuntos
Sistemas CRISPR-Cas/fisiologia , Imunidade Adaptativa/genética , Imunidade Adaptativa/fisiologia , Sistemas CRISPR-Cas/genética , Clivagem do DNA , Endorribonucleases/genética , Endorribonucleases/metabolismo , Edição de Genes/métodos , Multimerização Proteica/genética , Multimerização Proteica/fisiologiaRESUMO
Cas12a (Cpf1) is a CRISPR-associated nuclease with broad utility for synthetic genome engineering, agricultural genomics, and biomedical applications. Although bacteria harboring CRISPR-Cas9 or CRISPR-Cas3 adaptive immune systems sometimes acquire mobile genetic elements encoding anti-CRISPR proteins that inhibit Cas9, Cas3, or the DNA-binding Cascade complex, no such inhibitors have been found for CRISPR-Cas12a. Here we use a comprehensive bioinformatic and experimental screening approach to identify three different inhibitors that block or diminish CRISPR-Cas12a-mediated genome editing in human cells. We also find a widespread connection between CRISPR self-targeting and inhibitor prevalence in prokaryotic genomes, suggesting a straightforward path to the discovery of many more anti-CRISPRs from the microbial world.
Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Sistemas CRISPR-Cas , Endonucleases/antagonistas & inibidores , Edição de Genes , Moraxella/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Biologia Computacional/métodos , Clivagem do DNA , Genoma Bacteriano , HumanosRESUMO
In single stranded (+)-sense RNA viruses, RNA structural elements (SEs) play essential roles in the infection process from replication to encapsidation. Using selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq) and covariation analysis, we explore the structural features of the third genome segment of cucumber mosaic virus (CMV), RNA3 (2216 nt), both in vitro and in plant cell lysates. Comparing SHAPE-Seq and covariation analysis results revealed multiple SEs in the coat protein open reading frame and 3' untranslated region. Four of these SEs were mutated and serially passaged in Nicotiana tabacum plants to identify biologically selected changes to the original mutated sequences. After passaging, loop mutants showed partial reversion to their wild-type sequence and SEs that were structurally disrupted by mutations were restored to wild-type-like structures via synonymous mutations in planta. These results support the existence and selection of virus open reading frame SEs in the host organism and provide a framework for further studies on the role of RNA structure in viral infection. Additionally, this work demonstrates the applicability of high-throughput chemical probing in plant cell lysates and presents a new method for calculating SHAPE reactivities from overlapping reverse transcriptase priming sites.
Assuntos
Cucumovirus/genética , RNA Viral/química , Mutação , Conformação de Ácido NucleicoRESUMO
RNA folding during transcription directs an order of folding that can determine RNA structure and function. However, the experimental study of cotranscriptional RNA folding has been limited by the lack of easily approachable methods that can interrogate nascent RNA structure at nucleotide resolution. To address this, we previously developed cotranscriptional selective 2Î-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq) to simultaneously probe all intermediate RNA transcripts during transcription by stalling elongation complexes at catalytically dead EcoRIE111Q roadblocks. While effective, the distribution of elongation complexes using EcoRIE111Q requires laborious PCR using many different oligonucleotides for each sequence analyzed. Here, we improve the broad applicability of cotranscriptional SHAPE-Seq by developing a sequence-independent biotin-streptavidin (SAv) roadblocking strategy that simplifies the preparation of roadblocking DNA templates. We first determine the properties of biotin-SAv roadblocks. We then show that randomly distributed biotin-SAv roadblocks can be used in cotranscriptional SHAPE-Seq experiments to identify the same RNA structural transitions related to a riboswitch decision-making process that we previously identified using EcoRIE111Q. Lastly, we find that EcoRIE111Q maps nascent RNA structure to specific transcript lengths more precisely than biotin-SAv and propose guidelines to leverage the complementary strengths of each transcription roadblock in cotranscriptional SHAPE-Seq.
Assuntos
Biotina/química , Técnicas de Química Analítica , Dobramento de RNA , RNA/química , Estreptavidina/química , Transcrição Gênica , Acilação , Pareamento de Bases , Sequência de Bases , Biotina/genética , Primers do DNA/química , Primers do DNA/genética , Desoxirribonuclease EcoRI/química , Desoxirribonuclease EcoRI/genética , Hidróxidos/química , Conformação de Ácido Nucleico , RNA/biossíntese , RNA/genética , Riboswitch , Análise de Sequência de RNA , Estreptavidina/genéticaRESUMO
RNAs can begin to fold immediately as they emerge from RNA polymerase. During cotranscriptional folding, interactions between nascent RNAs and ligands are able to direct the formation of alternative RNA structures, a feature exploited by noncoding RNAs called riboswitches to make gene-regulatory decisions. Despite their importance, cotranscriptional folding pathways have yet to be uncovered with sufficient resolution to reveal how cotranscriptional folding governs RNA structure and function. To access cotranscriptional folding at nucleotide resolution, we extended selective 2'-hydroxyl acylation analyzed by primer-extension sequencing (SHAPE-seq) to measure structural information of nascent RNAs during transcription. Using cotranscriptional SHAPE-seq, we determined how the cotranscriptional folding pathway of the Bacillus cereus crcB fluoride riboswitch undergoes a ligand-dependent bifurcation that delays or promotes terminator formation via a series of coordinated structural transitions. Our results directly link cotranscriptional RNA folding to a genetic decision and establish a framework for cotranscriptional analysis of RNA structure at nucleotide resolution.
Assuntos
Bacillus cereus/química , Escherichia coli/química , Dobramento de RNA , RNA Bacteriano/química , Riboswitch , Bacillus cereus/genética , Sequência de Bases , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação , Conformação de Ácido Nucleico , RNA Bacteriano/genética , Partícula de Reconhecimento de Sinal/genética , Terminação da Transcrição Genética , Transcrição GênicaRESUMO
Mapping RNA structure with selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry has proven to be a versatile method for characterizing RNA structure in a variety of contexts. SHAPE reagents covalently modify RNAs in a structure-dependent manner to create adducts at the 2'-OH group of the ribose backbone at nucleotides that are structurally flexible. The positions of these adducts are detected using reverse transcriptase (RT) primer extension, which stops one nucleotide before the modification, to create a pool of cDNAs whose lengths reflect the location of SHAPE modification. Quantification of the cDNA pools is used to estimate the "reactivity" of each nucleotide in an RNA molecule to the SHAPE reagent. High reactivities indicate nucleotides that are structurally flexible, while low reactivities indicate nucleotides that are inflexible. These SHAPE reactivities can then be used to infer RNA structures by restraining RNA structure prediction algorithms. Here, we provide a state-of-the-art protocol describing how to perform in vitro RNA structure probing with SHAPE chemistry using next-generation sequencing to quantify cDNA pools and estimate reactivities (SHAPE-Seq). The use of next-generation sequencing allows for higher throughput, more consistent data analysis, and multiplexing capabilities. The technique described herein, SHAPE-Seq v2.0, uses a universal reverse transcription priming site that is ligated to the RNA after SHAPE modification. The introduced priming site allows for the structural analysis of an RNA independent of its sequence.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Modelos Moleculares , Conformação de Ácido Nucleico , RNA/química , Software , Acilação , Biologia Computacional/métodos , Dobramento de RNA , Análise de Sequência de RNARESUMO
RNAs assume sophisticated structures that are active in myriad cellular processes. In this review, we highlight newly identified ribozymes, riboswitches, and small RNAs, some of which control the function of cellular metabolic and gene expression networks. We then examine recent developments in genome-wide RNA structure probing technologies that are yielding new insights into the structural landscape of the transcriptome. Finally, we discuss how these RNA 'structomic' methods can address emerging questions in RNA systems biology, from the mechanisms behind long non-coding RNAs to new bases for human diseases.
Assuntos
Redes Reguladoras de Genes , Genoma , RNA/química , RNA/genética , Biologia de Sistemas/métodos , Transcriptoma/genética , Animais , HumanosRESUMO
Antisense RNA-mediated transcriptional regulators are powerful tools for controlling gene expression and creating synthetic gene networks. RNA transcriptional repressors derived from natural mechanisms called attenuators are particularly versatile, though their mechanistic complexity has made them difficult to engineer. Here we identify a new structure-function design principle for attenuators that enables the forward engineering of new RNA transcriptional repressors. Using in-cell SHAPE-Seq to characterize the structures of attenuator variants within Escherichia coli, we show that attenuator hairpins that facilitate interaction with antisense RNAs require interior loops for proper function. Molecular dynamics simulations of these attenuator variants suggest these interior loops impart structural flexibility. We further observe hairpin flexibility in the cellular structures of natural RNA mechanisms that use antisense RNA interactions to repress translation, confirming earlier results from in vitro studies. Finally, we design new transcriptional attenuators in silico using an interior loop as a structural requirement and show that they function as desired in vivo. This work establishes interior loops as an important structural element for designing synthetic RNA gene regulators. We anticipate that the coupling of experimental measurement of cellular RNA structure and function with computational modeling will enable rapid discovery of structure-function design principles for a diverse array of natural and synthetic RNA regulators.
Assuntos
Regulação Bacteriana da Expressão Gênica , Modelos Biológicos , RNA Bacteriano/genética , Transcrição Gênica , Escherichia coli/genética , Simulação de Dinâmica Molecular , MutaçãoRESUMO
RNA molecules adopt a wide variety of structures that perform many cellular functions, including, among others, catalysis, small molecule sensing, and cellular defense. Our ability to characterize, predict, and design RNA structures are key factors for understanding and controlling the biological roles of RNAs. Fortunately, there has been rapid progress in this area, especially with respect to experimental methods that can characterize RNA structures in a high throughput fashion using chemical probing and next-generation sequencing. Here, we describe one such method, selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq), which measures nucleotide resolution flexibility information for RNAs in vitro and in vivo. We outline the process of designing and performing a SHAPE-Seq experiment and describe methods for using experimental SHAPE-Seq data to restrain computational folding algorithms to generate more accurate predictions of RNA secondary structure. We also provide a number of examples of SHAPE-Seq reactivity spectra obtained in vitro and in vivo and discuss important considerations for performing SHAPE-Seq experiments, both in terms of collecting and analyzing data. Finally, we discuss improvements and extensions of these experimental and computational techniques that promise to deepen our knowledge of RNA folding and function.
Assuntos
RNA/química , Acilação , Sequência de Bases , Células Cultivadas , Simulação por Computador , Primers do DNA/química , Radical Hidroxila , Sequências Repetidas Invertidas , Modelos Moleculares , RNA/ultraestrutura , Dobramento de RNA , Análise de Sequência de RNARESUMO
Many non-coding RNAs form structures that interact with cellular machinery to control gene expression. A central goal of molecular and synthetic biology is to uncover design principles linking RNA structure to function to understand and engineer this relationship. Here we report a simple, high-throughput method called in-cell SHAPE-Seq that combines in-cell probing of RNA structure with a measurement of gene expression to simultaneously characterize RNA structure and function in bacterial cells. We use in-cell SHAPE-Seq to study the structure-function relationship of two RNA mechanisms that regulate translation in Escherichia coli. We find that nucleotides that participate in RNA-RNA interactions are highly accessible when their binding partner is absent and that changes in RNA structure due to RNA-RNA interactions can be quantitatively correlated to changes in gene expression. We also characterize the cellular structures of three endogenously expressed non-coding RNAs: 5S rRNA, RNase P and the btuB riboswitch. Finally, a comparison between in-cell and in vitro folded RNA structures revealed remarkable similarities for synthetic RNAs, but significant differences for RNAs that participate in complex cellular interactions. Thus, in-cell SHAPE-Seq represents an easily approachable tool for biologists and engineers to uncover relationships between sequence, structure and function of RNAs in the cell.
Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/química , RNA Ribossômico 5S/química , Ribonuclease P/química , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Sequência de Bases , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA Bacteriano/genética , RNA Ribossômico 5S/genética , Ribonuclease P/genética , Ribossomos/química , Ribossomos/genética , Riboswitch , Análise de Sequência de RNA , Relação Estrutura-AtividadeRESUMO
Since our ability to engineer biological systems is directly related to our ability to control gene expression, a central focus of synthetic biology has been to develop programmable genetic regulatory systems. Researchers are increasingly turning to RNA regulators for this task because of their versatility, and the emergence of new powerful RNA design principles. Here we review advances that are transforming the way we use RNAs to engineer biological systems. First, we examine new designable RNA mechanisms that are enabling large libraries of regulators with protein-like dynamic ranges. Next, we review emerging applications, from RNA genetic circuits to molecular diagnostics. Finally, we describe new experimental and computational tools that promise to accelerate our understanding of RNA folding, function and design.
Assuntos
RNA/química , RNA/genética , Biologia Sintética/métodos , Animais , Sequência de Bases , Computadores Moleculares , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Engenharia Genética/métodos , Humanos , Dobramento de RNARESUMO
RNA structure is a primary determinant of its function, and methods that merge chemical probing with next generation sequencing have created breakthroughs in the throughput and scale of RNA structure characterization. However, little work has been done to examine the effects of library preparation and sequencing on the measured chemical probe reactivities that encode RNA structural information. Here, we present the first analysis and optimization of these effects for selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). We first optimize SHAPE-Seq, and show that it provides highly reproducible reactivity data over a wide range of RNA structural contexts with no apparent biases. As part of this optimization, we present SHAPE-Seq v2.0, a 'universal' method that can obtain reactivity information for every nucleotide of an RNA without having to use or introduce a specific reverse transcriptase priming site within the RNA. We show that SHAPE-Seq v2.0 is highly reproducible, with reactivity data that can be used as constraints in RNA folding algorithms to predict structures on par with those generated using data from other SHAPE methods. We anticipate SHAPE-Seq v2.0 to be broadly applicable to understanding the RNA sequence-structure relationship at the heart of some of life's most fundamental processes.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/química , Análise de Sequência de RNA/métodos , Algoritmos , Conformação de Ácido Nucleico , Reação em Cadeia da Polimerase , TermodinâmicaRESUMO
Synthetic biology holds promise as both a framework for rationally engineering biological systems and a way to revolutionize how we fundamentally understand them. Essential to realizing this promise is the development of strategies and tools to reliably and predictably control and characterize sophisticated patterns of gene expression. Here we review the role that RNA can play towards this goal and make a case for why this versatile, designable, and increasingly characterizable molecule is one of the most powerful substrates for engineering gene expression at our disposal. We discuss current natural and synthetic RNA regulators of gene expression acting at key points of control--transcription, mRNA degradation, and translation. We also consider RNA structural probing and computational RNA structure predication tools as a way to study RNA structure and ultimately function. Finally, we discuss how next-generation sequencing methods are being applied to the study of RNA and to the characterization of RNA's many properties throughout the cell.