Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Health Perspect ; 132(4): 47009, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630605

RESUMO

BACKGROUND: Exposure to obesogenic chemicals has been reported to result in enhanced adipogenesis, higher adipose tissue accumulation, and reduced ovarian hormonal synthesis and follicular function. We have reported that organotins [tributyltin (TBT) and triphenyltin (TPT)] dysregulate cholesterol trafficking in ovarian theca cells, but, whether organotins also exert lipogenic effects on ovarian cells remains unexplored. OBJECTIVE: We investigated if environmentally relevant exposures to organotins [TBT, TPT, or dibutyltin (DBT)] induce lipid dysregulation in ovarian theca cells and the role of the liver X receptor (LXR) in this effect. We also tested the effect of TBT on oocyte maturation and neutral lipid accumulation, and lipid-related transcript expression in cumulus cells and preimplantation embryos. METHODS: Primary theca cell cultures derived from human and ovine ovaries were exposed to TBT, TPT, or DBT (1, 10, or 50 ng/ml). The effect of these chemical exposures on neutral lipid accumulation, lipid abundance and composition, lipid homeostasis-related gene expression, and cytokine secretion was evaluated using liquid chromatography-mass spectrometry (LC-MS), inhibitor-based methods, cytokine secretion, and lipid ontology analyses. We also exposed murine cumulus-oocyte complexes to TBT and evaluated oocyte maturation, embryo development, and lipid homeostasis-related mRNA expression in cumulus cells and blastocysts. RESULTS: Exposure to TBT resulted in higher intracellular neutral lipids in human and ovine primary theca cells. In ovine theca cells, this effect was dose-dependent, independent of cell stage, and partially mediated by LXR. DBT and TPT resulted in higher intracellular neutral lipids but to a lesser extent in comparison with TBT. More than 140 lipids and 9 cytokines were dysregulated in TBT-exposed human theca cells. Expression of genes involved in lipogenesis and fatty acid synthesis were higher in theca cells, as well as in cumulus cells and blastocysts exposed to TBT. However, TBT did not impact the rates of oocyte maturation or blastocyst development. DISCUSSION: TBT induced dyslipidemia in primary human and ovine theca cells, which may be responsible for some of the TBT-induced fertility dysregulations reported in rodent models of TBT exposure. https://doi.org/10.1289/EHP13955.


Assuntos
Compostos Orgânicos de Estanho , Células Tecais , Compostos de Trialquitina , Feminino , Humanos , Animais , Ovinos , Camundongos , Células Tecais/metabolismo , Compostos de Trialquitina/metabolismo , Compostos de Trialquitina/farmacologia , Lipídeos/farmacologia , Citocinas/metabolismo
2.
Toxicol Appl Pharmacol ; 483: 116804, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38185387

RESUMO

Pregnant women are exposed to complex chemical mixtures, many of which reach the placenta. Some of these chemicals interfere with epidermal growth factor receptor (EGFR) activation, a receptor tyrosine kinase that modulates several placenta cell functions. We hypothesized that a mixture of chemicals (Chem-Mix) known to reduce EGFR activation (polychlorinated biphenyl (PCB)-126, PCB-153, atrazine, trans-nonachlor, niclosamide, and bisphenol S) would interfere with EGFR-mediated trophoblast cell functions. To test this, we determined the chemicals' EGFR binding ability, EGFR and downstream effectors activation, and trophoblast functions (proliferation, invasion, and endovascular differentiation) known to be regulated by EGFR in extravillous trophoblasts (EVTs). The Chem-Mix competed with EGF for EGFR binding, however only PCB-153, niclosamide, trans-nonachlor, and BPS competed for binding as single chemicals. The effects of the Chem-Mix on EGFR phosphorylation were tested by exposing the placental EVT cell line, HTR-8/SVneo to control (0.1% DMSO), Chem-Mix (1, 10, or 100 ng/ml), EGF (30 ng/ml), or Chem-Mix + EGF. The Chem-Mix - but not the individual chemicals - reduced EGF-mediated EGFR phosphorylation in a dose dependent manner, while no effect was observed in its downstream effectors (AKT and STAT3). None of the individual chemicals affected EVT cell invasion, but the Chem-Mix reduced EVT cell invasion independent of EGF. In support of previous studies that have explored chemicals targeting a specific pathway (estrogen/androgen receptor), current findings indicate that exposure to a chemical mixture that targets the EGFR pathway can result in a greater impact compared to individual chemicals in the context of placental cell functions.


Assuntos
Fator de Crescimento Epidérmico , Hidrocarbonetos Clorados , Placenta , Bifenilos Policlorados , Humanos , Feminino , Gravidez , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Placenta/metabolismo , Niclosamida , Trofoblastos/metabolismo , Receptores ErbB/metabolismo , Movimento Celular
3.
Chemosphere ; 302: 134806, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35504463

RESUMO

Bisphenol A (BPA) is an endocrine disrupting chemical known to promote adipose tissue mass in vivo and adipogenesis in vitro. Whether BPA can affect and reprogram early adipogenic differentiation signals that trigger adipogenic differentiation, remains unknown. We hypothesized that gestational BPA exposure results in a preadipocyte phenotype that leads to accelerated adipogenic differentiation, and that this phenotype is sex specific. Primary ovine fetal preadipocytes were derived from control (C) and BPA-exposed during pregnancy and differentiated in vitro. Gestational BPA enhanced lipid accumulation at early stages of differentiation (48 h) and this was evident in females but not male-derived fetal preadipocytes. After an RNA sequencing approach, samples were compared as follows: 2 groups (C vs. BPA); 2 sexes (female (F) vs. male (M)); and 2 time points (0 h vs. 48 h). Before differentiation, 15 genes were differentially expressed between the C and the BPA-exposed preadipocytes within sex. In BPA-F, extracellular matrix remodeling genes cathepsin K and collagen 5α3 were upregulated compared to C-F. At 48 h, BPA-F had 154 genes differentially expressed vs. C-F and BPA-M had 487 genes differentially expressed vs. C-M. Triglyceride and glycerophospholipid metabolism were the most upregulated pathways in BPA-F. Downregulated pathways were associated with extracellular matrix organization in BPA-exposed preadipocytes. These findings are among the first to demonstrate that gestational BPA can modify the fate of adipocyte precursors by altering pathways associated to extracellular matrix components, an often-disregarded, but required aspect of adipogenic differentiation. This work highlights the need to investigate early adipogenic differentiation changes in other obesogenic chemicals.


Assuntos
Adipogenia , Compostos Benzidrílicos , Adipócitos/metabolismo , Animais , Compostos Benzidrílicos/metabolismo , Compostos Benzidrílicos/toxicidade , Diferenciação Celular , Células Cultivadas , Matriz Extracelular , Feminino , Masculino , Fenóis , Gravidez , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA