Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Nat Cell Biol ; 25(6): 823-835, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37291267

RESUMO

The endoplasmic reticulum (ER) forms a dynamic network that contacts other cellular membranes to regulate stress responses, calcium signalling and lipid transfer. Here, using high-resolution volume electron microscopy, we find that the ER forms a previously unknown association with keratin intermediate filaments and desmosomal cell-cell junctions. Peripheral ER assembles into mirror image-like arrangements at desmosomes and exhibits nanometre proximity to keratin filaments and the desmosome cytoplasmic plaque. ER tubules exhibit stable associations with desmosomes, and perturbation of desmosomes or keratin filaments alters ER organization, mobility and expression of ER stress transcripts. These findings indicate that desmosomes and the keratin cytoskeleton regulate the distribution, function and dynamics of the ER network. Overall, this study reveals a previously unknown subcellular architecture defined by the structural integration of ER tubules with an epithelial intercellular junction.


Assuntos
Citoesqueleto , Desmossomos , Desmossomos/química , Desmossomos/metabolismo , Desmossomos/ultraestrutura , Citoesqueleto/metabolismo , Queratinas/metabolismo , Filamentos Intermediários/metabolismo , Filamentos Intermediários/ultraestrutura , Retículo Endoplasmático/metabolismo
3.
Sci Rep ; 10(1): 9419, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523052

RESUMO

Dominant and recessive mutations in podocalyxin (PODXL) are associated with human kidney disease. Interestingly, some PODXL mutations manifest as anuria while others are associated with proteinuric kidney disease. PODXL heterozygosity is associated with adult-onset kidney disease and podocalyxin shedding into the urine is a common biomarker of a variety nephrotic syndromes. It is unknown, however, how various lesions in PODXL contribute to these disparate disease pathologies. Here we generated two mouse stains: one that deletes Podxl in developmentally mature podocytes (Podxl∆Pod) and a second that is heterozygous for podocalyxin in all tissues (Podxl+/-). We used histologic and ultrastructural analyses, as well as clinical chemistry assays to evaluate kidney development and function in these strains. In contrast to null knockout mice (Podxl-/-), which die shortly after birth from anuria and hypertension, Podxl∆Pod mice develop an acute congenital nephrotic syndrome characterized by focal segmental glomerulosclerosis (FSGS) and proteinuria. Podxl+/- mice, in contrast, have a normal lifespan, and fail to develop kidney disease under normal conditions. Intriguingly, although wild-type C57Bl/6 mice are resistant to puromycin aminonucleoside (PA)-induced nephrosis (PAN), Podxl+/- mice are highly sensitive and PA induces severe proteinuria and collapsing FSGS. In summary, we find that the developmental timepoint at which podocalyxin is ablated (immature vs. mature podocytes) has a profound effect on the urinary phenotype due to its critical roles in both the formation and the maintenance of podocyte ultrastructure. In addition, Podxl∆Pod and Podxl+/- mice offer powerful new mouse models to evaluate early biomarkers of proteinuric kidney disease and to test novel therapeutics.


Assuntos
Nefropatias/metabolismo , Podócitos/metabolismo , Sialoglicoproteínas/metabolismo , Animais , Feminino , Glomerulosclerose Segmentar e Focal/metabolismo , Glomerulosclerose Segmentar e Focal/patologia , Heterozigoto , Humanos , Nefropatias/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Fenótipo , Podócitos/patologia , Proteinúria/metabolismo , Proteinúria/patologia , Puromicina Aminonucleosídeo/metabolismo
4.
Anat Rec (Hoboken) ; 302(5): 735-744, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30447133

RESUMO

The tongue of rorqual (balaenopterid) whales slides far down the throat into the expanded oral pouch as an enormous mouthful of water is engulfed during gulp feeding. As the tongue and adjacent oral floor expands and slides caudoventrally, it glides along a more superficial (outer) layer of ventral body wall musculature, just deep to the accordion-like ventral throat pleats. We hypothesize that this sliding movement of adjacent musculature is facilitated by a slick, stretchy layer of loose areolar connective tissue that binds the muscle fibers and reduces friction: fascia. Gross anatomical examination of the gular region of adult minke, fin, and humpback whales confirms the presence of a discrete, three-layered sublingual fascia interposed between adhering fasciae of the tongue and body wall. Histological analysis of this sublingual fascia reveals collagen and elastin fibers loosely organized in a random feltwork along with numerous fibroblasts in a watery extracellular matrix. Biomechanical testing of tissue samples in the field and laboratory, via machine-controlled or manual stretching, demonstrates expansion of the sublingual fascia and its three layers up to 250% beyond resting dimensions, with slightly more extension observed in anteroposterior (rather than mediolateral or oblique) stretching, and with the most superficial of the fascia's three layers. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. Anat Rec, 302:735-744, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Balaenoptera/fisiologia , Fáscia/anatomia & histologia , Comportamento Alimentar/fisiologia , Língua/anatomia & histologia , Animais , Balaenoptera/anatomia & histologia , Fenômenos Biomecânicos , Elasticidade , Fáscia/fisiologia , Língua/fisiologia
5.
Anat Rec (Hoboken) ; 301(12): 2080-2085, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30312540

RESUMO

Sertoli cells of the mammalian seminiferous epithelium form unique subcellular actin-related structures at intercellular junctions. The appearance of these so called "tubulobulbar complexes" (TBCs) precedes both sperm release at the apex of the epithelium and the movement of early spermatogenic cells out of the spermatogonial stem cell niche at the base of the epithelium. TBCs are considered to be part of the mechanism of junction endocytosis by Sertoli cells. The structures contain junction proteins and morphologically identifiable junctions, and are associated with markers of endocytosis. Here we review the current state of knowledge about the structure and function of TBCs. As the complexes form, they morphologically resemble and have the molecular signature of clathrin-coated pits with extremely long necks. As they mature, the actin filament networks around the "necks" of the structures progressively disassemble and the membrane cores expand or swell into distinct "bulbs". These bulbs acquire extensive membrane contact sites with associated cisternae of endoplasmic reticulum. Eventually the bulbs undergo scission and continue through endosomal compartments of the Sertoli cells. The morphology and composition of TBC indicates to us that the structures likely evolved from the basic clathrin-mediated endocytosis mechanism common to cells generally, and along the way they incorporated unique features to accommodate the cyclic turnover of massive and "intact" intercellular junctions that occurs during spermatogenesis. Anat Rec, 301:2080-2085, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Actinas/metabolismo , Clatrina/metabolismo , Endocitose/fisiologia , Junções Intercelulares/metabolismo , Testículo/metabolismo , Actinas/análise , Animais , Clatrina/análise , Humanos , Junções Intercelulares/química , Masculino , Epitélio Seminífero/química , Epitélio Seminífero/citologia , Epitélio Seminífero/metabolismo , Células de Sertoli/química , Células de Sertoli/metabolismo , Testículo/química , Testículo/citologia
6.
Anat Rec (Hoboken) ; 300(6): 1160-1170, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28176461

RESUMO

Tubulobulbar complexes are clathrin/actin-based structures that internalize intercellular junctions in the testis. They resemble coated pits with extremely long necks that are cuffed by dendritic actin networks. As the structures mature, a swollen region or bulb develops near the end of each complex. The bulbs lack actin cuffs and are closely associated with cisternae of endoplasmic reticulum. The bulbs expand and are internalized and enter endocytic compartments of the Sertoli cell. Previous immunofluorescence studies have demonstrated that markers for early endosomes (Rab5 and EEA1) are associated with tubulobulbar complexes and are localized at or near the ends of the structures. Here we use a pre-embedding immunoelectron microscopic technique to accurately localize these markers to apical tubulobulbar complexes that occur at junctions between Sertoli cells and spermatids. Staining for Rab5 occurs at bulbs, identified by the presence of two plasma membranes and a close association with cisternae of endoplasmic reticulum. EEA1 is associated with large vesicles that lack an association with the endoplasmic reticulum. Labeling for nectin-3, an adhesion junction protein in the spermatid plasma membrane, occurs at junctions, TBC bulbs, and in associated double membrane vesicles. Our results suggest that Rab5 associates with junction protein containing bulbs prior to their internalization and that EEA1 associates with the structures later and after internalization. We conclude that at tubulobulbar complexes in Sertoli cells of the seminiferous epithelium, the identity of 'bulbs' as putative early endosomes begins to be established prior to their undergoing scission or budding from their parent structures. Anat Rec, 300:1160-1170, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Túbulos Seminíferos/ultraestrutura , Animais , Western Blotting , Masculino , Microscopia Imunoeletrônica , Nectinas/metabolismo , Ratos , Ratos Sprague-Dawley , Túbulos Seminíferos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
7.
Mol Cell Endocrinol ; 377(1-2): 33-43, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-23831638

RESUMO

From puberty and throughout adult spermatogenesis, retinoid signalling is essential for germ cell differentiation and male fertility. The initiation of spermatogonial differentiation and germ cell meiosis occurs under the direction of local retinoid signalling in the testis, and corresponds with the final phase of somatic Sertoli cell differentiation at puberty. Here, we consider the cellular and molecular basis of retinoid actions upon Sertoli cell differentiation. Primary rat Sertoli cells were isolated during the pubertal proliferative and quiescent phases at postnatal days 10- and 20- respectively, and cultured with all-trans-retinoic acid. We show that retinoid signalling can potently suppress activin-induced proliferation by antagonising G1 phase progression and entry into the cell cycle. Retinoid signalling was also found to initiate tight junction formation in primary Sertoli cells, consistent with a pro-differentiative role. This study implicates retinoid signalling in the differentiation of both somatic and germ cells in the testis at puberty.


Assuntos
Ativinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células de Sertoli/citologia , Tretinoína/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Modelos Biológicos , Ratos , Ratos Sprague-Dawley , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Células de Sertoli/ultraestrutura , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA