Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 9094, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277531

RESUMO

Image segmentation is the process of separating pixels of an image into multiple classes, enabling the analysis of objects in the image. Multilevel thresholding (MTH) is a method used to perform this task, and the problem is to obtain an optimal threshold that properly segments each image. Methods such as the Kapur entropy or the Otsu method, which can be used as objective functions to determine the optimal threshold, are efficient in determining the best threshold for bi-level thresholding; however, they are not effective for MTH due to their high computational cost. This paper integrates an efficient method for MTH image segmentation called the heap-based optimizer (HBO) with opposition-based learning termed improved heap-based optimizer (IHBO) to solve the problem of high computational cost for MTH and overcome the weaknesses of the original HBO. The IHBO was proposed to improve the convergence rate and local search efficiency of search agents of the basic HBO, the IHBO is applied to solve the problem of MTH using the Otsu and Kapur methods as objective functions. The performance of the IHBO-based method was evaluated on the CEC'2020 test suite and compared against seven well-known metaheuristic algorithms including the basic HBO, salp swarm algorithm, moth flame optimization, gray wolf optimization, sine cosine algorithm, harmony search optimization, and electromagnetism optimization. The experimental results revealed that the proposed IHBO algorithm outperformed the counterparts in terms of the fitness values as well as other performance indicators, such as the structural similarity index (SSIM), feature similarity index (FSIM), peak signal-to-noise ratio. Therefore, the IHBO algorithm was found to be superior to other segmentation methods for MTH image segmentation.

2.
Diagnostics (Basel) ; 13(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37189523

RESUMO

Image segmentation has been one of the most active research areas in the last decade. The traditional multi-level thresholding techniques are effective for bi-level thresholding because of their resilience, simplicity, accuracy, and low convergence time, but these traditional techniques are not effective in determining the optimal multi-level thresholding for image segmentation. Therefore, an efficient version of the search and rescue optimization algorithm (SAR) based on opposition-based learning (OBL) is proposed in this paper to segment blood-cell images and solve problems of multi-level thresholding. The SAR algorithm is one of the most popular meta-heuristic algorithms (MHs) that mimics humans' exploration behavior during search and rescue operations. The SAR algorithm, which utilizes the OBL technique to enhance the algorithm's ability to jump out of the local optimum and enhance its search efficiency, is termed mSAR. A set of experiments is applied to evaluate the performance of mSAR, solve the problem of multi-level thresholding for image segmentation, and demonstrate the impact of combining the OBL technique with the original SAR for improving solution quality and accelerating convergence speed. The effectiveness of the proposed mSAR is evaluated against other competing algorithms, including the L'evy flight distribution (LFD), Harris hawks optimization (HHO), sine cosine algorithm (SCA), equilibrium optimizer (EO), gravitational search algorithm (GSA), arithmetic optimization algorithm (AOA), and the original SAR. Furthermore, a set of experiments for multi-level thresholding image segmentation is performed to prove the superiority of the proposed mSAR using fuzzy entropy and the Otsu method as two objective functions over a set of benchmark images with different numbers of thresholds based on a set of evaluation matrices. Finally, analysis of the experiments' outcomes indicates that the mSAR algorithm is highly efficient in terms of the quality of the segmented image and feature conservation, compared with the other competing algorithms.

3.
Bioengineering (Basel) ; 10(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37106616

RESUMO

Early diagnosis and classification of arrhythmia from an electrocardiogram (ECG) plays a significant role in smart healthcare systems for the health monitoring of individuals with cardiovascular diseases. Unfortunately, the nonlinearity and low amplitude of ECG recordings make the classification process difficult. Thus, the performance of most traditional machine learning (ML) classifiers is questionable, as the interrelationship between the learning parameters is not well modeled, especially for data features with high dimensions. To address the limitations of ML classifiers, this paper introduces an automatic arrhythmia classification approach based on the integration of a recent metaheuristic optimization (MHO) algorithm and ML classifiers. The role of the MHO is to optimize the search parameters of the classifiers. The approach consists of three steps: the preprocessing of the ECG signal, the extraction of the features, and the classification. The learning parameters of four supervised ML classifiers were utilized for the classification task; support vector machine (SVM), k-nearest neighbors (kNNs), gradient boosting decision tree (GBDT), and random forest (RF) were optimized using the MHO algorithm. To validate the advantage of the proposed approach, several experiments were conducted on three common databases, including the Massachusetts Institute of Technology (MIT-BIH), the European Society of Cardiology ST-T (EDB), and the St. Petersburg Institute of Cardiological Techniques 12-lead Arrhythmia (INCART). The obtained results showed that the performance of all the tested classifiers were significantly improved after integrating the MHO algorithm, with the average ECG arrhythmia classification accuracy reaching 99.92% and a sensitivity of 99.81%, outperforming the state-of the-art methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA