Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (207)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38767357

RESUMO

The retinal pigment epithelium (RPE) is a crucial monolayer in the outer retina responsible for supporting photoreceptors. RPE degeneration commonly occurs in diseases marked by progressive vision loss, such as age-related macular degeneration (AMD). Research on AMD often relies on human donor eyes or induced pluripotent stem cells (iPSCs) to represent the RPE. However, these RPE sources require extended differentiation periods and substantial expertise for culturing. Additionally, some research institutions, particularly those in rural areas, lack easy access to donor eyes. While a commercially available immortalized RPE cell line (ARPE-19) exists, it lacks essential in vivo RPE features and is not widely accepted in many ophthalmology research publications. There is a pressing need to obtain representative primary RPE cells from a more readily available and cost-effective source. This protocol elucidates the isolation and subculture of primary RPE cells obtained post-mortem from porcine eyes, which can be sourced locally from commercial or academic suppliers. This protocol necessitates common materials typically found in tissue culture labs. The result is a primary, differentiated, and cost-effective alternative to iPSCs, human donor eyes, and ARPE-19 cells.


Assuntos
Epitélio Pigmentado da Retina , Epitélio Pigmentado da Retina/citologia , Animais , Suínos , Técnicas Citológicas/métodos , Células Epiteliais/citologia
2.
ACS Biomater Sci Eng ; 9(8): 5051-5061, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37458693

RESUMO

Bruch's membrane resides in the subretinal tissue and regulates the flow of nutrients and waste between the retinal pigment epithelial (RPE) and vascular layers of the eye. With age, Bruch's membrane becomes thicker, stiffer, and less permeable, which impedes its function as a boundary layer in the subretina. These changes contribute to pathologies such as age-related macular degeneration (AMD). To better understand how aging in Bruch's membrane affects surrounding tissues and to determine the relationship between aging and disease, an in vitro model of Bruch's membrane is needed. An accurate model of Bruch's membrane must be a proteinaceous, semipermeable, and nonporous biomaterial with similar mechanical properties to in vivo conditions. Additionally, this model must support RPE cell growth. While models of subretinal tissue exist, they typically differ from in vivo Bruch's membrane in one or more of these properties. This study evaluates the capability of membranes created from recombinant hagfish intermediate filament (rHIF) proteins to accurately replicate Bruch's membrane in an in vitro model of the subretinal tissue. The physical characteristics of these rHIF membranes were evaluated using mechanical testing, permeability assays, brightfield microscopy, and scanning electron microscopy. The capacity of the membranes to support RPE cell culture was determined using brightfield and fluorescent microscopy, as well as immunocytochemical staining. This study demonstrates that rHIF protein membranes are an appropriate biomaterial to accurately mimic both healthy and aged Bruch's membrane for in vitro modeling of the subretinal tissue.


Assuntos
Lâmina Basilar da Corioide , Feiticeiras (Peixe) , Animais , Lâmina Basilar da Corioide/metabolismo , Lâmina Basilar da Corioide/patologia , Proteínas de Filamentos Intermediários/metabolismo , Biomimética , Epitélio Pigmentado Ocular/metabolismo , Epitélio Pigmentado Ocular/patologia , Materiais Biocompatíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA