Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993731

RESUMO

Cell-to-cell signalling between niche and stem cells regulates tissue regeneration. While the identity of many mediating factors is known, it is largely unknown whether stem cells optimize their receptiveness to niche signals according to the niche organization. Here, we show that Lgr5+ small intestinal stem cells (ISCs) regulate the morphology and orientation of their secretory apparatus to match the niche architecture, and to increase transport efficiency of niche signal receptors. Unlike the progenitor cells lacking lateral niche contacts, ISCs orient Golgi apparatus laterally towards Paneth cells of the epithelial niche, and divide Golgi into multiple stacks reflecting the number of Paneth cell contacts. Stem cells with a higher number of lateral Golgi transported Epidermal growth factor receptor (Egfr) with a higher efficiency than cells with one Golgi. The lateral Golgi orientation and enhanced Egfr transport required A-kinase anchor protein 9 (Akap9), and was necessary for normal regenerative capacity in vitro . Moreover, reduced Akap9 in aged ISCs renders ISCs insensitive to niche-dependent modulation of Golgi stack number and transport efficiency. Our results reveal stem cell-specific Golgi complex configuration that facilitates efficient niche signal reception and tissue regeneration, which is compromised in the aged epithelium.

2.
Nature ; 607(7919): 548-554, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35831497

RESUMO

The morphology and functionality of the epithelial lining differ along the intestinal tract, but tissue renewal at all sites is driven by stem cells at the base of crypts1-3. Whether stem cell numbers and behaviour vary at different sites is unknown. Here we show using intravital microscopy that, despite similarities in the number and distribution of proliferative cells with an Lgr5 signature in mice, small intestinal crypts contain twice as many effective stem cells as large intestinal crypts. We find that, although passively displaced by a conveyor-belt-like upward movement, small intestinal cells positioned away from the crypt base can function as long-term effective stem cells owing to Wnt-dependent retrograde cellular movement. By contrast, the near absence of retrograde movement in the large intestine restricts cell repositioning, leading to a reduction in effective stem cell number. Moreover, after suppression of the retrograde movement in the small intestine, the number of effective stem cells is reduced, and the rate of monoclonal conversion of crypts is accelerated. Together, these results show that the number of effective stem cells is determined by active retrograde movement, revealing a new channel of stem cell regulation that can be experimentally and pharmacologically manipulated.


Assuntos
Contagem de Células , Movimento Celular , Intestinos , Células-Tronco , Animais , Mucosa Intestinal/citologia , Intestino Delgado/citologia , Intestinos/citologia , Camundongos , Receptores Acoplados a Proteínas G , Células-Tronco/citologia , Proteínas Wnt
3.
Cell Rep ; 35(10): 109212, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107251

RESUMO

Obesity is an established risk factor for cancer in many tissues. In the mammalian intestine, a pro-obesity high-fat diet (HFD) promotes regeneration and tumorigenesis by enhancing intestinal stem cell (ISC) numbers, proliferation, and function. Although PPAR (peroxisome proliferator-activated receptor) nuclear receptor activity has been proposed to facilitate these effects, their exact role is unclear. Here we find that, in loss-of-function in vivo models, PPARα and PPARδ contribute to the HFD response in ISCs. Mechanistically, both PPARs do so by robustly inducing a downstream fatty acid oxidation (FAO) metabolic program. Pharmacologic and genetic disruption of CPT1A (the rate-controlling enzyme of mitochondrial FAO) blunts the HFD phenotype in ISCs. Furthermore, inhibition of CPT1A dampens the pro-tumorigenic consequences of a HFD on early tumor incidence and progression. These findings demonstrate that inhibition of a HFD-activated FAO program creates a therapeutic opportunity to counter the effects of a HFD on ISCs and intestinal tumorigenesis.


Assuntos
Carcinogênese/patologia , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Intestinos/patologia , Obesidade/fisiopatologia , PPAR alfa/metabolismo , Células-Tronco/metabolismo , Animais , Humanos , Camundongos , Oxirredução
4.
Nature ; 594(7863): 430-435, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079124

RESUMO

The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling1, but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)2. Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer.


Assuntos
Competição entre as Células , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Esterases/metabolismo , Genes APC , Mutação , Adenoma/genética , Adenoma/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Competição entre as Células/genética , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Meios de Cultivo Condicionados , Progressão da Doença , Esterases/antagonistas & inibidores , Esterases/genética , Feminino , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organoides/citologia , Organoides/metabolismo , Organoides/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA