Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(21): 9092-9105, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38738956

RESUMO

The simultaneous presence of different electrophores provides an interesting playground for responsive materials. Herein, we present the incorporation of a twice-reversibly oxidizable tetrathiafulvalene (TTF) unit into a binucleating ligand, bridging two metal centers in a fully conjugated plane. A two-step synthesis scheme gave the D2h symmetric Schiff base-like ligand H4L in moderate yields from which the corresponding copper(II) [Cu2L], nickel(II) [Ni2L], [Ni2L(py)4] and iron(II) complexes [Fe2L(py)4], [Fe2L(dmap)4] and [Fe2L(bpee)2]·1 Tol could be obtained. Characterization was performed through 1H-NMR, IR, UV-vis and 57Fe-Mössbauer spectroscopy, SQUID magnetometry and cyclic voltammetry, supported by density functional theory (DFT) calculations. Single crystal X-ray analysis of [Ni2L(py)4] revealed six-coordinate paramagnetic centers, whereas [Ni2L] underwent gradual coordination induced spin state switching (CISSS) in solution. The magnetic independence of both metal centers is echoed by close-to-ideal Curie-plots of the [Cu2L] system and the gradual spin crossover of all iron(II) compounds. By contrast, cyclic voltammetry measurements in solution indicated oxidation-dependent TTF-metal interactions, as well as metal-metal interactions. The reversible TTF-borne events in H4L and [Ni2L] are overlaid with metal-borne events in the case of [Fe2L(py)4], as is corroborated by an analysis of the frontier orbital landscapes and through diagnostic spectral features upon chemical oxidation.

3.
Chemistry ; 30(34): e202400321, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38625710

RESUMO

Two novel isostructural cyanide-bridged hexadecanuclear complexes with the general formula {[Fe(CN)6]6[M{en(Bn)py}]10}2+ [M=Fe (12+), Ni (22+)] have been synthesized. The structural analyses disclose the presence of multivalent Fe centres with different spin states in complex 12+ whereas all the Fe centres share a conserved oxidation state in complex 22+. The DC magnetic study revealed antiferromagnetic interactions between the adjacent metal centres and ferrimagnetic behaviour in 12+. On the other hand, ferromagnetic interactions were observed in complex 22+ due to nearly orthogonal orientation of the interacting orbitals and poor spatial overlap as observed in BS-DFT calculations.

4.
Inorg Chem ; 62(11): 4435-4455, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36888965

RESUMO

In this study, a synthesis route of tri(quinolin-8-yl)amine (L), a recent member of the tetradentate tris(2-pyridylmethyl)amine (TPA) ligand family, is reported. With the neutral ligand L bound to an iron(II) center in κ4 mode, two cis-oriented coordination sites remain vacant. These can be occupied by coligands such as counterions and solvent molecules. How sensitive this equilibrium can be is most evident if both triflate anions and acetonitrile molecules are available. All three combinations─bis(triflato), bis(acetonitrile), and mixed coligand species─could be characterized by single-crystal X-ray diffraction (SCXRD), which is unique so far for this class of ligand. While at room temperature, the three compounds tend to crystallize concomitantly, the equilibrium can be shifted in favor of the bis(acetonitrile) species by lowering the crystallization temperature. Removed from their mother liquor, the latter is very sensitive to evaporation of the residual solvent, which was observed by powder X-ray diffraction (PXRD) and Mössbauer spectroscopy. The solution behavior of the triflate and acetonitrile species was studied in detail using time- and temperature-resolved UV/vis spectroscopy, Mössbauer spectroscopy of frozen solution, NMR spectroscopy, and magnetic susceptibility measurements. The results indicate a bis(acetonitrile) species in acetonitrile showing a temperature-dependent spin-switching behavior between high- and low-spin. In dichloromethane, the results reveal a high-spin bis(triflato) species. In pursuit of understanding the coordination environment equilibria of the [Fe(L)]2+ complex, a series of compounds with different coligands was prepared and analyzed with SCXRD. The crystal structures indicate that the spin state can be controlled by changing the coordination environment─all of the {N6}-coordinated complexes display geometries expected for low-spin species, while any other donor atom in the coligand position induces a shift to the high-spin state. This fundamental study sheds light on the coligand competition of triflate and acetonitrile, and the high number of crystal structures allows further insights into the influence of different coligands on the geometry and spin state of the complexes.

5.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982817

RESUMO

Inspired by the vascular-disrupting agent combretastatin A-4 and recently published anticancer active N-heterocyclic carbene (NHC) complexes of Au(I), a series of new iodidogold(I)-NHC complexes was synthesized and characterized. The iodidogold(I) complexes were synthesized by a route involving van Leusen imidazole formation and N-alkylation, followed by complexation with Ag2O, transmetalation with chloro(dimethylsulfide)gold(I) [Au(DMS)Cl], and anion exchange with KI. The target complexes were characterized by IR spectroscopy, 1H and 13C NMR spectroscopy, and mass spectrometry. The structure of 6c was validated via single-crystal X-ray diffraction. A preliminary anticancer screening of the complexes using two esophageal adenocarcinoma cell lines showed promising nanomolar activities for certain iodidogold(I) complexes accompanied with apoptosis induction, as well as c-Myc and cyclin D1 suppression in esophageal adenocarcinoma cells treated with the most promising derivative 6b.


Assuntos
Adenocarcinoma , Complexos de Coordenação , Compostos Heterocíclicos , Humanos , Estrutura Molecular , Cristalografia por Raios X , Ouro/química , Morte Celular , Adenocarcinoma/tratamento farmacológico , Metano/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Compostos Heterocíclicos/química
6.
Wirtschaftsdienst ; 102(2): 148-150, 2022.
Artigo em Alemão | MEDLINE | ID: mdl-35221391

RESUMO

The demographic development in Germany will lead to a declining number of people of working age and thus potentially in the labour force. The age structure is shifting towards older cohorts. The labour force will decline by 16 million workers between 2020 and 2060. However, an increase in the labour force participation of women and elderly people combined with immigration will mitigate the demographic effect. An average net migration of 100,000 persons per year would result in a projected decline in the labour force of 9 million by 2060. An extremely high migration of at least 400,000 persons would allow the potential labour force to remain roughly constant. A sensitivity analysis also looks at the effects that may arise if the participation rates increased even further.

7.
Nanoscale ; 14(8): 3131-3147, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35142327

RESUMO

The combination of polymers with nanoparticles offers the possibility to obtain customizable composite materials with additional properties such as sensing or bistability provided by a switchable spin crossover (SCO) core. For all applications, a precise control over size and shape of the nanomaterial is highly important as it will significantly influence its final properties. By confined synthesis of iron(II) SCO coordination polymers within the P4VP cores of polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) micelles in THF we are able to control the size and also the shape of the resulting SCO nanocomposite particles by the composition of the PS-b-P4VP diblock copolymers (dBCPs) and the amount of complex employed. For the nanocomposite samples with the highest P4VP content, a morphological transition from spherical nanoparticles to worm-like structures was observed with increasing coordination polymer content, which can be explained with the impact of complex coordination on the self-assembly of the dBCP. Furthermore, the SCO nanocomposites showed transition temperatures of T1/2 = 217 K, up to 27 K wide hysteresis loops and a decrease of the residual high-spin fraction down to γHS = 14% in the worm-like structures, as determined by magnetic susceptibility measurements and Mössbauer spectroscopy. Thus, SCO properties close or even better (hysteresis) to those of the bulk material can be obtained and furthermore tuned through size and shape control realized by tailoring the block length ratio of the PS-b-P4VP dBCPs.

8.
Angew Chem Int Ed Engl ; 61(15): e202117570, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35129881

RESUMO

Responsive fluorescent materials offer a high potential for sensing and (bio-)imaging applications. To investigate new concepts for such materials and to broaden their applicability, the previously reported non-fluorescent zinc(II) complex [Zn(L)] that shows coordination-induced turn-on emission was encapsulated into a family of non-fluorescent polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) diblock copolymer micelles leading to brightly emissive materials. Coordination-induced turn-on emission upon incorporation and ligation of the [Zn(L)] in the P4VP core outperform parent [Zn(L)] in pyridine solution with respect to lifetimes, quantum yields, and temperature resistance. The quantum yield can be easily tuned by tailoring the selectivity of the employed solvent or solvent mixture and, thus, the tendency of the PS-b-P4VP diblock copolymers to self-assemble into micelles. A medium-dependent off-on sensor upon micelle formation could be established by suppression of non-micelle-borne emission background pertinent to chloroform through controlled acidification indicating an additional pH-dependent process.


Assuntos
Micelas , Polímeros , Solventes
9.
Phys Chem Chem Phys ; 24(2): 883-894, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34908055

RESUMO

From X-ray absorption spectroscopy (XAS) and X-ray photoemission spectroscopy (XPS), it is evident that the spin state transition behavior of Fe(II) spin crossover coordination polymer crystallites at the surface differs from the bulk. A comparison of four different coordination polymers reveals that the observed surface properties may differ from bulk for a variety of reasons. There are Fe(II) spin crossover coordination polymers with either almost complete switching of the spin state at the surface or no switching at all. Oxidation, differences in surface packing, and changes in coordination could all contribute to making the surface very different from the bulk. Some Fe(II) spin crossover coordination polymers may be sufficiently photoactive so that X-ray spectroscopies cannot discern the spin state transition.

10.
Chemistry ; 27(61): 15158-15170, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34431572

RESUMO

Three new zinc(II) coordination units [Zn(1-3)] based on planar-directing tetradentate Schiff base-like ligands H2 (1-3) were synthesized. Their solid-state structures were investigated by single crystal X-ray diffraction, showing the tendency to overcome the square-planar coordination sphere by axial ligation. Affinity in solution towards axial ligation has been tested by extended spectroscopic studies, both in the absorption and emission mode. The electronic spectrum of the pyridine complex [Zn(1)(py)] has been characterized by MC-PDFT to validate the results of extended TD-DFT studies. Green emission of non-emissive solutions of [Zn(1-3)] in chloroform could be switched on in the presence of potent Lewis-bases. While interpretation in terms of an equilibrium of stacked/non-fluorescent and destacked/fluorescent species is in line with precedents from literature, the sensitivity of [Zn(1-3)] was greatly reduced. Results of a computation-based structure search allow to trace the hidden Lewis acidity of [Zn(1-3)] to a new stacking motif, resulting in a strongly enhanced stability of the dimers.


Assuntos
Complexos de Coordenação , Zinco , Cristalografia por Raios X , Ácidos de Lewis , Ligantes , Bases de Schiff
11.
Chemistry ; 27(68): 16990-17001, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34227717

RESUMO

Phase-pure spinel-type magnetic nickel ferrite (NiFe2 O4 ) nanocrystals in the size range of 4 to 11 nm were successfully synthesized by a fast and energy-saving microwave-assisted approach. Size and accessible surface areas can be tuned precisely by the reaction parameters. Our results highlight the correlation between size, degree of inversion, and magnetic characteristics of NiFe2 O4 nanoparticles, which enables fine-tuning of these parameters for a particular application without changing the elemental composition. Moreover, the application potential of the synthesized powders for the electrocatalytic oxygen evolution reaction in alkaline media was demonstrated, showing that a low degree of inversion is beneficial for the overall performance. The most active sample reaches an overpotential of 380 mV for water oxidation at 10 mA cm-2 and 38.8 mA cm-2 at 1.7 V vs. RHE, combined with a low Tafel slope of 63 mV dec-1 .

12.
ACS Appl Mater Interfaces ; 13(7): 8745-8753, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33560117

RESUMO

Ceramic fibers are high-tech structural key components of ceramic matrix composites (CMCs), which are a very promising class of materials for applications in next-generation turbines, especially nonoxide ceramic fibers, usually produced by the polymer-derived ceramics (PDC) route, which possess the enhanced mechanical and thermostructural properties necessary to withstand the harsh conditions (temperature and atmosphere) imposed on CMCs. However, recycling composite materials, such as fiber-reinforced polymers and CMCs, is still a big challenge. Here, we present for the first time the processing of superparamagnetic iron-containing ceramic fibers, which, due to their magnetic properties, can be separated from the matrix material of a composite. The synthesis strategy of the novel functional ceramic fibers is based on a tailored reaction of polyorganosilazane with an iron complex, resulting in a suitable, meltable polymer. After melt-spinning and curing, subsequent pyrolysis leads to superparamagnetic ceramic fibers with a saturation magnetization of 1.54 emu g-1 because of in situ-formed iron silicide nanoparticles of an average size of 7.5 nm, homogeneously dispersed in an amorphous SiCNO matrix. Moreover, the ceramic fibers exhibit a tensile strength of 1.24 GPa and appropriate oxidation resistance. The developed versatile reaction strategy allows also for the incorporation of other elements to implement further functionalities for processing of multifunctional composites.

13.
J Am Chem Soc ; 143(9): 3466-3480, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33636077

RESUMO

The response of the spin state to in situ variation of the coordination number (CISSS) is a promising and viable approach to smart sensor materials, yet it suffers to date from insensitive detection. Herein, we present the synthetic access to a family of planar nickel(II) complexes, whose CISSS is sensitively followed by means of fluorescence detection. For this purpose, nickel(II) complexes with four phenazine-based Schiff base-like ligands were synthesized and characterized through solution-phase spectroscopy (NMR and UV-vis), solid-state structure analysis (single-crystal XRD), and extended theoretical modeling. All of them reveal CISSS in solution through axial ligating a range of N- and O-donors. CISSS correlates nicely with the basicity of the axial ligand and the substitution-dependent acidity of the nickel(II) coordination site. Remarkably, three out of the four nickel(II) complexes are fluorescent in noncoordinating solvents but are fluorescence-silent in the presence of axial ligands such as pyridine. As these complexes are rare examples of fluorescent nickel(II) complexes, the photophysical properties with a coordination number of 4 were studied in detail, including temperature-dependent lifetime and quantum yield determinations. Most importantly, fluorescence quenching upon adding axial ligands allows a "black or white", i.e. digital, sensoring of spin state alternation. Our studies of fluorescence-detected CISSS (FD-CISSS) revealed that absorption-based CISSS and FD-CISSS are super proportional with respect to the pyridine concentration: FD-CISSS features a higher sensitivity. Overall, our findings indicate a favored ligation of these nickel(II) complexes in the excited state in comparison to the ground state.

14.
ChemistryOpen ; 9(11): 1214-1220, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33294306

RESUMO

Applications in biomedicine and ferrofluids, for instance, require long-term colloidally stable, concentrated aqueous dispersions of magnetic, biocompatible nanoparticles. Iron oxide and related spinel ferrite nanoparticles stabilized with organic molecules allow fine-tuning of magnetic properties via cation substitution and water-dispersibility. Here, we synthesize≤5 nm iron oxide and spinel ferrite nanoparticles, capped with citrate, betaine and phosphocholine, in a one-pot strategy. We present a robust approach combining elemental (CHN) and thermal gravimetric analysis (TGA) to quantify the ratio of residual solvent molecules and organic stabilizers on the particle surface, being of particular accuracy for ligands with heteroatoms compared to the solvent. SAXS experiments demonstrate the long-term colloidal stability of our aqueous iron oxide and spinel ferrite nanoparticle dispersions for at least 3 months. By the use of SAXS we approved directly the colloidal stability of the nanoparticle dispersions for high concentrations up to 100 g L-1.

15.
Inorg Chem ; 59(20): 15343-15354, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33002361

RESUMO

Bis(pyrazolyl)bipyridinylmethane iron(II) complexes show a versatile spin state switching behavior in different solvents. In the solid, the magnetic properties of the compounds have been characterized by X-ray diffraction, Mößbauer spectroscopy, and SQUID magnetometry and point toward a high spin state. For nitrilic solvents, the solvation of the complexes leads to a change of the coordination environment from {N5O} to {N6} and results in a temperature-dependent SCO behavior. Thermodynamic properties of this transformation are obtained via UV/vis spectroscopy, SQUID measurements, and the Evans NMR method. Moreover, a coordination-induced spin state switch (CISSS) to low spin is observed by using methanol as solvent, triggered through a rearrangement of the coordination sphere. The same behavior can be observed by changing the stoichiometry of the ligand-to-metal ratio in MeCN, where the process is reversible. This transformation is monitored via UV/vis spectroscopy, and the resulting new bis-meridional coordination motif, first described for bis(pyrazolyl)methanes, is characterized in the solid state via X-ray diffraction, Mößbauer spectroscopy, and SQUID measurements. The sophisticated correlation of these switchable properties in dependence on different types of solvents reveals that the influence of the solvent on the coordination environment and magnetic properties should not be underestimated. Furthermore, careful investigation is necessary to differentiate between a thermally-induced spin crossover and a coordination-induced spin state switch.

16.
Chem Commun (Camb) ; 56(72): 10469-10472, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32766630

RESUMO

A one-dimensional FeII coordination polymer (CP) has been formed which includes the redox-active ligand bis-pyridyltetrathiafulvalene (py2TTF) and a Schiff base-like N2O2 ligand. This CP is both spin crossover (SCO) and redox-active in the solid-state, and chemical oxidation results in SCO modification.

17.
J Phys Condens Matter ; 32(44): 440201, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32721932
18.
Inorg Chem ; 59(12): 8320-8333, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32496060

RESUMO

In this work, two iron(II) coordination compounds with a N2O2 coordinating Schiff base-like ligand bearing a redox active tetrathiafulvalene (TTF) unit and pyridine or trans-1,2-bis(4-pyridylethylene) as an axial ligand are synthesized. Crystals suitable for single X-ray structure analysis were obtained for the new ligand. The complexes were characterized by magnetic susceptibility measurements, T-dependent UV-vis spectroscopy, and cyclic voltammetry. Both complexes display spin transition behavior below room temperature with T1/2 values of 146 and 156 K. The mononuclear iron(II) complex [FeTTFL(py)2] is relatively stable up to 400 K compared to similar complexes, showing no loss of axial ligands upon heating. Temperature dependent Mössbauer spectroscopy was conducted for the coordination polymer {[FeTTFL(bpee)]}n to get more information regarding the origin of the stepwise spin crossover (SCO) behavior observed in the magnetic measurements. The change of the spin state is accompanied by a change of the optical properties, which can be monitored by VT-UV-vis spectroscopy for the mononuclear complex and has been analyzed in theoretical studies. The redox behavior of the iron(II) complexes reveals three reversible redox steps which are located at the iron center and at the TTF unit of the ligand. Oxidation of the TTF unit induces characteristic changes in the UV-vis spectrum that can be followed by spectroelectrochemical UV-vis spectroscopy. Addressing the potential of the iron-centered redox process results in similar changes in the UV-vis spectrum, which indicates an electronic coupling of the redox active unit with the metal center under certain circumstances.

19.
J Phys Condens Matter ; 32(32): 324003, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32189641

RESUMO

The iron(II) spin crossover complex Fe(1,10-phenanthroline)2(NCS)2, dubbed Fe-phen, has been studied with scanning tunneling microscopy, after adsorption on the 'herringbone' reconstructed surface of Au(111) for sub-monolayer coverages. The Fe-phen molecules attach, through their NCS-groups, to the Au atoms of the fcc domains of the reconstructed surface only, thereby lifting the herringbone reconstruction. The molecules stack to form 1D chains, which run along the Au[110] directions. Neighboring Fe-phen molecules are separated by approximately 2.65 nm, corresponding to 9 atomic spacings in this direction. The molecular axis, defined by the two phenanthroline groups, is aligned perpendicular to the chain axis, along the Au [Formula: see text] direction, thereby bridging over 5 atomic spacings, in this direction. Experimental evidence suggests that the molecular spins are locked in a mixed state in the sub-monolayer regime at temperatures between 100 K and 300 K.

20.
Molecules ; 25(3)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013168

RESUMO

Three new iron(II) 1D coordination polymers with cooperative spin crossover behavior showing thermal hysteresis loops were synthesized using N2O2 Schiff base-like equatorial ligands and 4,4'-dipyridylethyne as a bridging, rigid axial linker. One of those iron(II) 1D coordination polymers showed a 73 K wide hysteresis below room temperature, which, upon solvent loss, decreased to a still remarkable 30 K wide hysteresis. Single crystal X-ray structures of two iron(II) coordination polymers and T-dependent powder XRD patterns are discussed to obtain insight into the structure property relationship of those materials.


Assuntos
Compostos de Ferro/síntese química , Ferro/química , Varredura Diferencial de Calorimetria , Cristalografia por Raios X , Eletroquímica , Magnetismo , Modelos Moleculares , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA