Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Behav Neurosci ; 138(2): 85-93, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38661668

RESUMO

Rodent behavioral studies have largely focused on male animals, which has limited the generalizability and conclusions of neuroscience research. Working with humans and rodents, we studied sex effects during interval timing that requires participants to estimate an interval of several seconds by making motor responses. Interval timing requires attention to the passage of time and working memory for temporal rules. We found no differences between human females and males in interval timing response times (timing accuracy) or the coefficient of variance of response times (timing precision). Consistent with prior work, we also found no differences between female and male rodents in timing accuracy or precision. In female rodents, there was no difference in interval timing between estrus and diestrus cycle stages. Because dopamine powerfully affects interval timing, we also examined sex differences with drugs targeting dopaminergic receptors. In both female and male rodents, interval timing was delayed after administration of sulpiride (D2-receptor antagonist), quinpirole (D2-receptor agonist), and SCH-23390 (D1-receptor antagonist). By contrast, after administration of SKF-81297 (D1-receptor agonist), interval timing shifted earlier only in male rodents. These data illuminate sex similarities and differences in interval timing. Our results have relevance for rodent models of both cognitive function and brain disease by increasing representation in behavioral neuroscience. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Percepção do Tempo , Feminino , Masculino , Animais , Percepção do Tempo/fisiologia , Percepção do Tempo/efeitos dos fármacos , Humanos , Caracteres Sexuais , Dopamina/metabolismo , Ratos , Receptores de Dopamina D2/metabolismo , Sulpirida/farmacologia , Quimpirol/farmacologia , Agonistas de Dopamina/farmacologia , Agonistas de Dopamina/administração & dosagem , Antagonistas de Dopamina/farmacologia , Antagonistas de Dopamina/administração & dosagem , Adulto , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/fisiologia , Benzazepinas/farmacologia , Adulto Jovem , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/antagonistas & inibidores , Memória de Curto Prazo/fisiologia , Memória de Curto Prazo/efeitos dos fármacos
2.
J Parkinsons Dis ; 14(1): 81-94, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38189765

RESUMO

BACKGROUND: Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are characterized by diffuse spread of alpha-synuclein (α-syn) throughout the brain. Patients with PDD and DLB have a neuropsychological pattern of deficits that include executive dysfunction, such as abnormalities in planning, timing, working memory, and behavioral flexibility. The prefrontal cortex (PFC) plays a major role in normal executive function and often develops α-syn aggregates in DLB and PDD. OBJECTIVE: To investigate the long-term behavioral and cognitive consequences of α-syn pathology in the cortex and characterize pathological spread of α-syn. METHODS: We injected human α-syn pre-formed fibrils into the PFC of wild-type male mice. We then assessed the behavioral and cognitive effects between 12- and 21-months post-injection and characterized the spread of pathological α-syn in cortical, subcortical, and brainstem regions. RESULTS: We report that PFC PFFs: 1) induced α-syn aggregation in multiple cortical and subcortical regions with sparse aggregation in midbrain and brainstem nuclei; 2) did not affect interval timing or spatial learning acquisition but did mildly alter behavioral flexibility as measured by intraday reversal learning; and 3) increased open field exploration. CONCLUSIONS: This model of cortical-dominant pathology aids in our understanding of how local α-syn aggregation might impact some symptoms in PDD and DLB.


Assuntos
Doença de Alzheimer , Demência , Doença de Parkinson , Humanos , Masculino , Camundongos , Animais , alfa-Sinucleína/metabolismo , Doença de Parkinson/patologia , Córtex Pré-Frontal/patologia
3.
bioRxiv ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37546735

RESUMO

The role of striatal pathways in cognitive processing is unclear. We studied dorsomedial striatal cognitive processing during interval timing, an elementary cognitive task that requires mice to estimate intervals of several seconds, which involves working memory for temporal rules as well as attention to the passage of time. We harnessed optogenetic tagging to record from striatal D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) in the indirect pathway and from D1-dopamine receptor-expressing MSNs (D1-MSNs) in the direct pathway. We found that D2-MSNs and D1-MSNs exhibited opposing dynamics over temporal intervals as quantified by principal component analyses and trial-by-trial generalized linear models. MSN recordings helped construct and constrain a four-parameter drift-diffusion computational model. This model predicted that disrupting either D2-MSN or D1-MSNs would increase interval timing response times and alter MSN firing. In line with this prediction, we found that optogenetic inhibition or pharmacological disruption of either D2-MSNs or D1-MSNs increased response times. Pharmacologically disrupting D2-MSNs or D1-MSNs also increased response times, shifted MSN dynamics, and degraded trial-by-trial temporal decoding. Together, our findings demonstrate that D2-MSNs and D1-MSNs make complementary contributions to interval timing despite opposing dynamics, implying that striatal direct and indirect pathways work together to shape temporal control of action. These data provide novel insight into basal ganglia cognitive operations beyond movement and have implications for a broad range of human striatal diseases and for therapies targeting striatal pathways.

4.
bioRxiv ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37961154

RESUMO

Mesolimbic dopamine (DA) transmission is believed to play a critical role in mediating reward responses to drugs of abuse, including alcohol (EtOH). EtOH is the most abused substance worldwide with chronic consumption often leading to the development of dependence and abuse. Unfortunately, the neurobiological mechanisms underlying EtOH-seeking behavior and dependence are not fully understood, and abstinence remains the only effective way to prevent alcohol use disorders (AUDs). Here, we developed novel RGS6 fl/fl ; DAT-iCreER mice to determine the role of RGS6 in VTA DA neurons on EtOH consumption and reward behaviors. We found that RGS6 is expressed in DA neurons in both human and mouse VTA, and that RGS6 loss in mice upregulates DA transporter (DAT) expression in VTA DA neuron synaptic terminals. Remarkably, loss of RGS6 in VTA DA neurons significantly reduced EtOH consumption, preference, and reward in a manner indistinguishable from that seen in RGS6 -/- mice. Strikingly, RGS6 loss from VTA DA neurons before or after EtOH behavioral reward is established significantly reduced (∼50%) re-instatement of reward following extinguishment, demonstrating distinct roles of RGS6 in promoting reward and relapse susceptibility to EtOH. These studies illuminate a critical role of RGS6 in the mesolimbic circuit in promoting EtOH seeking, reward, and reinstatement. We propose that RGS6 functions to promote DA transmission through its function as a negative modulator of GPCR-Gα i/o -DAT signaling in VTA DA neurons. These studies identify RGS6 as a potential therapeutic target for behavioral reward and relapse to EtOH.

5.
bioRxiv ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205472

RESUMO

Rodent behavioral studies have largely focused on male animals, which has limited the generalizability and conclusions of neuroscience research. Working with humans and rodents, we studied sex effects during interval timing that requires participants to estimate an interval of several seconds by making motor responses. Interval timing requires attention to the passage of time and working memory for temporal rules. We found no differences between human females and males in interval timing response times (timing accuracy) or the coefficient of variance of response times (timing precision). Consistent with prior work, we also found no differences between female and male rodents in timing accuracy or precision. In female rodents, there was no difference in interval timing between estrus and diestrus cycle stages. Because dopamine powerfully affects interval timing, we also examined sex differences with drugs targeting dopaminergic receptors. In both female and male rodents, interval timing was delayed after administration of sulpiride (D2-receptor antagonist), quinpirole (D2-receptor agonist), and SCH-23390 (D1-receptor antagonist). By contrast, after administration of SKF-81297 (D1-receptor agonist), interval timing shifted earlier only in male rodents. These data illuminate sex similarities and differences in interval timing. Our results have relevance for rodent models of both cognitive function and brain disease by increasing represenation in behavioral neuroscience.

6.
NPJ Parkinsons Dis ; 9(1): 32, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864060

RESUMO

Terazosin is an α1-adrenergic receptor antagonist that enhances glycolysis and increases cellular ATP by binding to the enzyme phosphoglycerate kinase 1 (PGK1). Recent work has shown that terazosin is protective against motor dysfunction in rodent models of Parkinson's disease (PD) and is associated with slowed motor symptom progression in PD patients. However, PD is also characterized by profound cognitive symptoms. We tested the hypothesis that terazosin protects against cognitive symptoms associated with PD. We report two main results. First, in rodents with ventral tegmental area (VTA) dopamine depletion modeling aspects of PD-related cognitive dysfunction, we found that terazosin preserved cognitive function. Second, we found that after matching for demographics, comorbidities, and disease duration, PD patients newly started on terazosin, alfuzosin, or doxazosin had a lower hazard of being diagnosed with dementia compared to tamsulosin, an α1-adrenergic receptor antagonist that does not enhance glycolysis. Together, these findings suggest that in addition to slowing motor symptom progression, glycolysis-enhancing drugs protect against cognitive symptoms of PD.

7.
bioRxiv ; 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36778400

RESUMO

Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB) are characterized by diffuse spread of alpha-synuclein (α-syn) throughout the brain. Patients with PDD and DLB have a neuropsychological pattern of deficits that include executive dysfunction, such as abnormalities in planning, timing, working memory, and behavioral flexibility. The prefrontal cortex (PFC) plays a major role in normal executive function and often develops α-syn aggregates in DLB and PDD. To investigate the consequences of α-syn pathology in the cortex, we injected human α-syn pre-formed fibrils into the PFC of wildtype mice. We report that PFC PFFs: 1) induced α-syn aggregation in multiple cortical and subcortical regions with sparse aggregation in midbrain and brainstem nuclei; 2) did not affect interval timing or spatial learning acquisition but did mildly alter behavioral flexibility as measured by intraday reversal learning; 3) increased open field exploration; and 4) did not affect susceptibility to an inflammatory challenge. This model of cortical-dominant pathology aids in our understanding of how local α-syn aggregation might impact some symptoms in PDD and DLB.

8.
Behav Brain Res ; 432: 113967, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35718229

RESUMO

Interval timing is a key executive process that involves estimating the duration of an interval over several seconds or minutes. Patients with Alzheimer's disease (AD) have deficits in interval timing. Since temporal control of action is highly conserved across mammalian species, studying interval timing tasks in animal AD models may be relevant to human disease. Amyloid plaques and tau neurofibrillary tangles are hallmark features of AD. While rodent models of amyloid pathology are known to have interval timing impairments, to our knowledge, interval timing has not been studied in models of tauopathy. Here, we evaluate interval timing performance of P301S transgenic mice, a widely studied model of tauopathy that overexpresses human tau with the P301S mutation. We employed an interval timing task and found that P301S mice consistently underestimated temporal intervals compared to wild-type controls, responding early in anticipation of the target interval. Our study indicating timing deficits in a mouse tauopathy model could have relevance to human tauopathies such as AD.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Humanos , Mamíferos , Camundongos , Camundongos Transgênicos , Tauopatias/genética , Tauopatias/patologia , Proteínas tau/genética
9.
Behav Neurosci ; 136(3): 207-218, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35389678

RESUMO

Dopamine in the prefrontal cortex can be disrupted in human disorders that affect cognitive function such as Parkinson's disease (PD), attention-deficit hyperactivity disorder (ADHD), and schizophrenia. Dopamine has a powerful effect on prefrontal circuits via the D1-type dopamine receptor (D1DR). It has been proposed that prefrontal dopamine has "inverted U-shaped" dynamics, with optimal dopamine and D1DR signaling required for peak cognitive function. However, the quantitative relationship between prefrontal dopamine and cognitive function is not clear. Here, we conducted a meta-analysis of published manipulations of prefrontal dopamine and the effects on working memory, a high-level executive function in humans, primates, and rodents that involves maintaining and manipulating information over seconds to minutes. We reviewed 646 articles and found that 75 studies met criteria for inclusion. Our quantification of effect sizes for dopamine, D1DRs, and behavior revealed a negative quadratic slope. This is consistent with the proposed inverted U-shape of prefrontal dopamine and D1DRs and working memory performance, explaining 10% of the variance. Of note, the inverted quadratic fit was much stronger for prefrontal D1DRs alone, explaining 26% of the variance, compared to prefrontal dopamine alone, explaining 10% of the variance. Taken together, these data, derived from a variety of manipulations and systems, demonstrate that optimal prefrontal dopamine signaling is linked with higher cognitive function. Our results provide insight into the fundamental dynamics of prefrontal dopamine, which could be useful for pharmacological interventions targeting prefrontal dopaminergic circuits, and into the pathophysiology of human brain disease. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Assuntos
Dopamina , Esquizofrenia , Animais , Dopamina/farmacologia , Memória de Curto Prazo/fisiologia , Córtex Pré-Frontal/fisiologia , Receptores de Dopamina D1/metabolismo
10.
Eur J Neurosci ; 54(3): 5063-5074, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34097793

RESUMO

Temporal control of action is key for a broad range of behaviors and is disrupted in human diseases such as Parkinson's disease and schizophrenia. A brain structure that is critical for temporal control is the dorsal striatum. Experience and learning can influence dorsal striatal neuronal activity, but it is unknown how these neurons change with experience in contexts which require precise temporal control of movement. We investigated this question by recording from medium spiny neurons (MSNs) via dorsal striatal microelectrode arrays in mice as they gained experience controlling their actions in time. We leveraged an interval timing task optimized for mice which required them to "switch" response ports after enough time had passed without receiving a reward. We report three main results. First, we found that time-related ramping activity and response-related activity increased with task experience. Second, temporal decoding by MSN ensembles improved with experience and was predominantly driven by time-related ramping activity. Finally, we found that a subset of MSNs had differential modulation on error trials. These findings enhance our understanding of dorsal striatal temporal processing by demonstrating how MSN ensembles can evolve with experience. Our results can be linked to temporal habituation and illuminate striatal flexibility during interval timing, which may be relevant for human disease.


Assuntos
Corpo Estriado , Percepção do Tempo , Animais , Camundongos , Neurônios , Recompensa
11.
Int Rev Neurobiol ; 158: 421-441, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33785154

RESUMO

Across species, the medial prefrontal cortex guides actions in time. This process can be studied using behavioral paradigms such as simple reaction-time and interval-timing tasks. Temporal control of action can be influenced by prefrontal neurotransmitters such as dopamine and acetylcholine and is highly relevant to human diseases such as Parkinson's disease, schizophrenia, and attention-deficit hyperactivity disorder (ADHD). We review evidence that across species, medial prefrontal lesions impair the temporal control of action. We then consider neurophysiological correlates in humans, primates, and rodents that might encode temporal processing and relate to cognitive-control mechanisms. These data have informed brain-stimulation studies in rodents and humans that can compensate for timing deficits. This line of work illuminates basic mechanisms of temporal control of action in the medial prefrontal cortex, which underlies a range of high-level cognitive processing and could contribute to new biomarkers and therapies for human brain diseases.


Assuntos
Processamento Eletrônico de Dados , Córtex Pré-Frontal , Animais , Humanos , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/fisiopatologia , Primatas , Roedores , Fatores de Tempo
12.
Cereb Cortex Commun ; 1(1): tgaa058, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34296121

RESUMO

Behavioral flexibility requires the prefrontal cortex and striatum, but it is unclear if these structures play similar or distinct roles in adapting to novel circumstances. Here, we investigate neuronal ensembles in the medial frontal cortex (MFC) and the dorsomedial striatum (DMS) during one form of behavioral flexibility: learning a new temporal interval. We studied corticostriatal neuronal activity as rodents trained to respond after a 12-s fixed interval (FI12) learned to respond at a shorter 3-s fixed interval (FI3). On FI12 trials, we found that a key form of temporal processing-time-related ramping activity-decreased in the MFC but did not change in the DMS as animals learned to respond at a shorter interval. However, while MFC and DMS ramping was stable with successive days of two-interval performance, temporal decoding by DMS ensembles improved on FI3 trials. Finally, when comparing FI12 versus FI3 trials, we found that more DMS neurons than MFC neurons exhibited differential interval-related activity early in two-interval performance. These data suggest that the MFC and DMS play distinct roles during temporal learning and provide insight into corticostriatal circuits.

13.
Neuropharmacology ; 165: 107924, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31881169

RESUMO

Dysregulation in glucocorticoid stress and accumbal dopamine reward systems can alter reward salience to increase motivational drive in control conditions while contributing to relapse during drug withdrawal. Amphetamine withdrawal is associated with dysphoria and stress hypersensitivity that may be mediated, in part, by enhanced stress-induced corticosterone observed in the ventral hippocampus. Electrical stimulation of the ventral hippocampus enhances accumbal shell dopamine release, establishing a functional connection between these two regions. However, the effects of ventral hippocampal corticosterone on this system are unknown. To address this, a stress-relevant concentration of corticosterone (0.24ng/0.5 µL) or vehicle were infused into the ventral hippocampus of urethane-anesthetized adult male rats in control and amphetamine withdrawn conditions. Accumbal dopamine output was assessed with in vivo chronoamperometry. Corticosterone infused into the ventral hippocampus rapidly enhanced accumbal dopamine output in control conditions, but produced a biphasic reduction of accumbal dopamine output in amphetamine withdrawal. Selectively blocking glucocorticoid-, mineralocorticoid-, or cytosolic receptors prevented the effects of corticosterone. Overall, these results suggest that the ability of corticosterone to alter accumbal dopamine output requires cooperative activation of mineralocorticoid and glucocorticoid receptors in the cytosol, which is dysregulated during amphetamine withdrawal. These findings implicate ventral hippocampal corticosterone in playing an important role in driving neural systems involved in positive stress coping mechanisms in healthy conditions, whereas dysregulation of this system may contribute to relapse during withdrawal.


Assuntos
Anfetamina/administração & dosagem , Estimulantes do Sistema Nervoso Central/administração & dosagem , Corticosterona/metabolismo , Dopamina/metabolismo , Hipocampo/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Estresse Psicológico/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Corticosterona/administração & dosagem , Hipocampo/metabolismo , Masculino , Núcleo Accumbens/metabolismo , Ratos Sprague-Dawley , Estresse Psicológico/induzido quimicamente
14.
PLoS One ; 14(5): e0214986, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31067256

RESUMO

Managing rivers in society's best interest requires data on river condition. However, the complexity of river ecosystems, combined with finite budgets for river monitoring and modeling, mean difficult choices are necessary regarding what information will be available. Typically, decisions of "what to measure" are left to natural scientists. However, knowledge of public appetite for different types of information helps ensure river data is useful to society. We investigated public interest in rivers directly, engaging nearly one hundred urban and rural participants in a combination of focus groups and semi-structured interviews. Drawing on concepts of "final" ecosystem services developed in environmental economics, we moved discussions past commonly mentioned stressors, such as pollution, to actual river features important in and of themselves. Participant feedback reflected extensive thought on river issues, in contrast to a stereotype that the public is ambivalent about environmental conditions. Interests were also broad, encompassing water quality and quantity, fish and wildlife, vegetation, and human features. Results show consolidation around relatively few themes despite diverse sociodemographics. Themes were interpreted into distilled, specific metrics to make public feedback as useful as possible for water resources monitoring, modeling, and management. Our research provides detailed, methodically generated hypotheses regarding river themes and metrics of public interest that should be considered as part of the tradeoffs inherent in river monitoring design. Results compared reasonably well to river attributes emphasized in river restoration environmental valuation reviews, with some differences. Future research could test our hypotheses with large-sample surveys.


Assuntos
Conservação dos Recursos Naturais , Rios , Adolescente , Adulto , Animais , Biota , Ecossistema , Monitoramento Ambiental/métodos , Feminino , Peixes , Grupos Focais , Humanos , Masculino , Pessoa de Meia-Idade , Rios/química , Qualidade da Água , Adulto Jovem
15.
Eur J Neurosci ; 48(2): 1833-1850, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29904960

RESUMO

Adult psychiatric disorders characterized by cognitive deficits reliant on prefrontal cortex (PFC) dopamine are promoted by teenage bullying. Similarly, male Sprague-Dawley rats exposed to social defeat in mid-adolescence (P35-39) show impaired working memory in adulthood (P56-70), along with decreased medial PFC (mPFC) dopamine activity that results in part from increased dopamine transporter-mediated clearance. Here, we determined if dopamine synthesis and D2 autoreceptor-mediated inhibition of dopamine release in the adult mPFC are also enhanced by adolescent defeat to contribute to later dopamine hypofunction. Control and previously defeated rats did not differ in either DOPA accumulation following amino acid decarboxylase inhibition (NSD-1015 100 mg/kg ip.) or total/phosphorylated tyrosine hydroxylase protein expression, suggesting dopamine synthesis in the adult mPFC is not altered by adolescent defeat. However, exposure to adolescent defeat caused greater decreases in extracellular dopamine release (measured using in vivo chronoamperometry) in the adult mPFC upon local infusion of the D2 receptor agonist quinpirole (3 nM), implying greater D2 autoreceptor function. Equally enhanced D2 autoreceptor-mediated inhibition of dopamine release is seen in the adolescent (P40 or P49) mPFC, which declines in control rats by adulthood. However, this developmental decrease in autoreceptor function is absent following adolescent defeat, suggesting retention of an adolescent-like phenotype into adulthood. Current and previous findings indicate adolescent defeat decreases extracellular dopamine availability in the adult mPFC via both enhanced inhibition of dopamine release and increased dopamine clearance, which may be viable targets for improving treatment of cognitive deficits seen in neuropsychiatric disorders promoted by adolescent stress.


Assuntos
Autorreceptores/metabolismo , Dominação-Subordinação , Dopamina/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Dopamina D2/metabolismo , Estresse Psicológico/metabolismo , Fatores Etários , Animais , Comportamento Animal/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
16.
Prog Neuropsychopharmacol Biol Psychiatry ; 79(Pt B): 136-154, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28642080

RESUMO

Repeated exposure to stress during childhood is associated with increased risk for neuropsychiatric illness, substance use disorders and other behavioral problems in adulthood. However, it is not clear how chronic childhood stress can lead to emergence of such a wide range of symptoms and disorders in later life. One possible explanation lies in stress-induced disruption to the development of specific brain regions associated with executive function and reward processing, deficits in which are common to the disorders promoted by childhood stress. Evidence of aberrations in prefrontal cortex and nucleus accumbens function following repeated exposure of juvenile (pre- and adolescent) organisms to a variety of different stressors would account not only for the similarity in symptoms across the wide range of childhood stress-associated mental illnesses, but also their persistence into adulthood in the absence of further stress. Therefore, the goal of this review is to evaluate the current knowledge regarding disruption to executive function and reward processing in adult animals or humans exposed to chronic stress over the juvenile period, and the underlying neurobiology, with particular emphasis on the prefrontal cortex and nucleus accumbens. First, the role of these brain regions in mediating executive function and reward processing is highlighted. Second, the neurobehavioral development of these systems is discussed to illustrate how juvenile stress may exert long-lasting effects on prefrontal cortex-accumbal activity and related behavioral functions. Finally, a critical review of current animal and human findings is presented, which strongly supports the supposition that exposure to chronic stress (particularly social aggression and isolation in animal studies) in the juvenile period produces impairments in executive function in adulthood, especially in working memory and inhibitory control. Chronic juvenile stress also results in aberrations to reward processing and seeking, with increased sensitivity to drugs of abuse particularly noted in animal models, which is in line with greater incidence of substance use disorders seen in clinical studies. These consequences are potentially mediated by monoamine and glutamatergic dysfunction in the prefrontal cortex and nucleus accumbens, providing translatable therapeutic targets. However, the predominant use of male subjects and social-based stressors in preclinical studies points to a clear need for determining how both sex differences and stressor heterogeneity may differentially contribute to stress-induced changes to substrates mediating executive function and reward processing, before the impact of chronic juvenile stress in promoting adult psychopathology can be fully understood.


Assuntos
Núcleo Accumbens/crescimento & desenvolvimento , Núcleo Accumbens/fisiopatologia , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/fisiopatologia , Estresse Psicológico/fisiopatologia , Animais , Comportamento Aditivo/fisiopatologia , Doença Crônica , Cognição/fisiologia , Humanos , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia
17.
Ecol Soc ; 22(3): 15, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30416527

RESUMO

Although ecosystem services research has become common, few efforts are directed toward in-depth understanding of the specific ecological quantities people value. The theoretical framework of final ecosystem services focuses attention on such measurable attributes, as a common currency for social-ecological systems research. Environmental communications as well as ecological monitoring and analysis efforts could be enhanced through increased documentation of final ecosystem services. For example, small changes in the way ecosystems are described could strongly influence relevance to the public and improve the foundation for environmental decision making. Focusing on rivers and streams, we conducted a content analysis of existing publications to document the breadth and frequency with which various measurable attributes, such as flooding, water quality characteristics, and wildlife appeared in different news sources over a multiyear timeline. In addition to attributes, motivations for human interest in river-related resources were also coded, such as recreation or preservation for future generations. To allow testing of differences between materials written for different audiences, three sources were sampled: a blog hosted by National Geographic, New York Times articles, and Wall Street Journal articles. The coding approach was rigorously tested in a pilot phase, with measures developed to ensure high data quality, including use of two independent coders. Results show numerous similarities across sources with some notable differences in emphasis. Significant relationships between groups of attribute and motivation codes were also found, one outcome of which is further support for the importance of nonuse values for fish and wildlife. Besides offering insight on ecosystem services, the project demonstrates an in-depth quantitative approach to analyzing preexisting qualitative data.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA