Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 26(3): 353-365, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443567

RESUMO

Development requires coordinated interactions between the epiblast, which generates the embryo proper; the trophectoderm, which generates the placenta; and the hypoblast, which forms both the anterior signalling centre and the yolk sac. These interactions remain poorly understood in human embryogenesis because mechanistic studies have only recently become possible. Here we examine signalling interactions post-implantation using human embryos and stem cell models of the epiblast and hypoblast. We find anterior hypoblast specification is NODAL dependent, as in the mouse. However, while BMP inhibits anterior signalling centre specification in the mouse, it is essential for its maintenance in human. We also find contrasting requirements for BMP in the naive pre-implantation epiblast of mouse and human embryos. Finally, we show that NOTCH signalling is important for human epiblast survival. Our findings of conserved and species-specific factors that drive these early stages of embryonic development highlight the strengths of comparative species studies.


Assuntos
Embrião de Mamíferos , Camadas Germinativas , Gravidez , Feminino , Humanos , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Transdução de Sinais , Implantação do Embrião
2.
Nat Commun ; 14(1): 4022, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419903

RESUMO

Biomechanical cues are instrumental in guiding embryonic development and cell differentiation. Understanding how these physical stimuli translate into transcriptional programs will provide insight into mechanisms underlying mammalian pre-implantation development. Here, we explore this type of regulation by exerting microenvironmental control over mouse embryonic stem cells. Microfluidic encapsulation of mouse embryonic stem cells in agarose microgels stabilizes the naive pluripotency network and specifically induces expression of Plakoglobin (Jup), a vertebrate homolog of ß-catenin. Overexpression of Plakoglobin is sufficient to fully re-establish the naive pluripotency gene regulatory network under metastable pluripotency conditions, as confirmed by single-cell transcriptome profiling. Finally, we find that, in the epiblast, Plakoglobin was exclusively expressed at the blastocyst stage in human and mouse embryos - further strengthening the link between Plakoglobin and naive pluripotency in vivo. Our work reveals Plakoglobin as a mechanosensitive regulator of naive pluripotency and provides a paradigm to interrogate the effects of volumetric confinement on cell-fate transitions.


Assuntos
Desenvolvimento Embrionário , Camadas Germinativas , Animais , Camundongos , Humanos , gama Catenina/genética , gama Catenina/metabolismo , Diferenciação Celular/genética , Camadas Germinativas/metabolismo , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica , Blastocisto/metabolismo , Mamíferos/genética
3.
EMBO J ; 41(24): e111021, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35993232

RESUMO

Individual cells within de novo polarising tubes and cavities must integrate their forming apical domains into a centralised apical membrane initiation site (AMIS). This is necessary to enable organised lumen formation within multi-cellular tissue. Despite the well-documented importance of cell division in localising the AMIS, we have found a division-independent mechanism of AMIS localisation that relies instead on Cadherin-mediated cell-cell adhesion. Our study of de novo polarising mouse embryonic stem cells (mESCs) cultured in 3D suggests that cell-cell adhesion localises apical proteins such as PAR-6 to a centralised AMIS. Unexpectedly, we also found that mESC clusters lacking functional E-cadherin still formed a lumen-like cavity in the absence of AMIS localisation but did so at a later stage of development via a "closure" mechanism, instead of via hollowing. This work suggests that there are two, interrelated mechanisms of apical polarity localisation: cell adhesion and cell division. Alignment of these mechanisms in space allows for redundancy in the system and ensures the development of a coherent epithelial structure within a growing organ.


Assuntos
Caderinas , Polaridade Celular , Animais , Camundongos , Caderinas/genética , Caderinas/metabolismo , Membrana Celular/metabolismo , Adesão Celular , Células Epiteliais/metabolismo
4.
Nat Commun ; 12(1): 3679, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140473

RESUMO

Following implantation, the human embryo undergoes major morphogenetic transformations that establish the future body plan. While the molecular events underpinning this process are established in mice, they remain unknown in humans. Here we characterise key events of human embryo morphogenesis, in the period between implantation and gastrulation, using single-cell analyses and functional studies. First, the embryonic epiblast cells transition through different pluripotent states and act as a source of FGF signals that ensure proliferation of both embryonic and extra-embryonic tissues. In a subset of embryos, we identify a group of asymmetrically positioned extra-embryonic hypoblast cells expressing inhibitors of BMP, NODAL and WNT signalling pathways. We suggest that this group of cells can act as the anterior singalling centre to pattern the epiblast. These results provide insights into pluripotency state transitions, the role of FGF signalling and the specification of anterior-posterior axis during human embryo development.


Assuntos
Implantação do Embrião/genética , Desenvolvimento Embrionário , Gastrulação/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Camadas Germinativas/metabolismo , Análise de Célula Única/métodos , Via de Sinalização Wnt , Proteína Morfogenética Óssea 1/antagonistas & inibidores , Linhagem da Célula , Células Cultivadas , Implantação do Embrião/fisiologia , Embrião de Mamíferos , Fatores de Crescimento de Fibroblastos/metabolismo , Gastrulação/fisiologia , Camadas Germinativas/citologia , Humanos , Processamento de Imagem Assistida por Computador , Família Multigênica , Proteína Nodal/antagonistas & inibidores , RNA-Seq , Análise Espaço-Temporal
5.
Cell Rep ; 34(10): 108834, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33691117

RESUMO

At implantation, the embryo establishes contacts with the maternal endometrium. This stage is associated with a high incidence of preclinical pregnancy losses. While the maternal factors underlying uterine receptivity have been investigated, the signals required by the embryo for successful peri-implantation development remain elusive. To explore these, we studied integrin ß1 signaling, as embryos deficient for this receptor degenerate at implantation. We demonstrate that the coordinated action of pro-survival signals and localized actomyosin suppression via integrin ß1 permits the development of the embryo beyond implantation. Failure of either process leads to developmental arrest and apoptosis. Pharmacological stimulation through fibroblast growth factor 2 (FGF2) and insulin-like growth factor 1 (IGF1), coupled with ROCK-mediated actomyosin inhibition, rescues the deficiency of integrin ß1, promoting progression to post-implantation stages. Mutual exclusion between integrin ß1 and actomyosin seems to be conserved in the human embryo, suggesting the possibility that these mechanisms could also underlie the transition of the human epiblast from pre- to post-implantation.


Assuntos
Integrina beta1/metabolismo , Morfogênese , Actomiosina/metabolismo , Amidas/farmacologia , Animais , Implantação do Embrião , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Camadas Germinativas/crescimento & desenvolvimento , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/farmacologia , Integrina beta1/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Morfogênese/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Piridinas/farmacologia , Transdução de Sinais , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo
6.
Cell Rep ; 34(3): 108655, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33472064

RESUMO

Implantation is a hallmark of mammalian embryogenesis during which embryos establish their contacts with the maternal endometrium, remodel, and undertake growth and differentiation. The mechanisms and sequence of events through which embryos change their shape during this transition are largely unexplored. Here, we show that the first extraembryonic lineage, the polar trophectoderm, is the key regulator for remodeling the embryonic epiblast. Loss of its function after immuno-surgery or inhibitor treatments prevents the epiblast shape transitions. In the mouse, the polar trophectoderm exerts physical force upon the epiblast, causing it to transform from an oval into a cup shape. In human embryos, the polar trophectoderm behaves in the opposite manner, exerting a stretching force. By mimicking this stretching behavior in mouse embryogenesis, we could direct the epiblast to adopt the disc-like shape characteristic of human embryos at this stage. Thus, the polar trophectoderm acts as a conserved regulator of epiblast shape.


Assuntos
Implantação do Embrião/fisiologia , Desenvolvimento Embrionário/fisiologia , Camadas Germinativas/metabolismo , Animais , Diferenciação Celular , Humanos , Camundongos
7.
Dev Cell ; 52(3): 321-334.e6, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32049039

RESUMO

Epithelial fusion is a key process of morphogenesis by which tissue connectivity is established between adjacent epithelial sheets. A striking and poorly understood feature of this process is "zippering," whereby a fusion point moves directionally along an organ rudiment. Here, we uncover the molecular mechanism underlying zippering during mouse spinal neural tube closure. Fusion is initiated via local activation of integrin ß1 and focal anchorage of surface ectoderm cells to a shared point of fibronectin-rich basement membrane, where the neural folds first contact each other. Surface ectoderm cells undergo proximal junction shortening, establishing a transitory semi-rosette-like structure at the zippering point that promotes juxtaposition of cells across the midline enabling fusion propagation. Tissue-specific ablation of integrin ß1 abolishes the semi-rosette formation, preventing zippering and causing spina bifida. We propose integrin-mediated anchorage as an evolutionarily conserved mechanism of general relevance for zippering closure of epithelial gaps whose disturbance can produce clinically important birth defects.


Assuntos
Embrião de Mamíferos/fisiologia , Células Epiteliais/fisiologia , Adesões Focais , Integrina beta1/fisiologia , Crista Neural/embriologia , Tubo Neural/embriologia , Neurulação , Actomiosina/metabolismo , Animais , Fusão Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , Crista Neural/metabolismo , Crista Neural/fisiologia , Tubo Neural/metabolismo , Tubo Neural/fisiologia
8.
Curr Top Dev Biol ; 136: 113-138, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31959285

RESUMO

Development of the mammalian embryo begins with formation of the totipotent zygote during fertilization. This initial cell is able to give rise to every embryonic tissue of the developing organism as well as all extra-embryonic lineages, such as the placenta and the yolk sac, which are essential for the initial patterning and support growth of the fetus until birth. As the embryo transits from pre- to post-implantation, major structural and transcriptional changes occur within the embryonic lineage to set up the basis for the subsequent phase of gastrulation. Fine-tuned coordination of cell division, morphogenesis and differentiation is essential to ultimately promote assembly of the future fetus. Here, we review the current knowledge of mammalian development of both mouse and human focusing on morphogenetic processes leading to the onset of gastrulation, when the embryonic anterior-posterior axis becomes established and the three germ layers start to be specified.


Assuntos
Blastocisto/fisiologia , Diferenciação Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/fisiologia , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese , Animais , Blastocisto/citologia , Humanos , Camundongos , Transdução de Sinais
9.
Nat Commun ; 10(1): 3557, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391456

RESUMO

Mammalian embryos change shape dramatically upon implantation. The cellular and molecular mechanism underlying this transition are largely unknown. Here, we show that this transition is directed by cross talk between the embryonic epiblast and the first extra-embryonic tissue, the trophectoderm. Specifically, we show via visualisation of a Cdx2-GFP reporter line and pharmacologically mediated loss and gain of function experiments that the epiblast provides FGF signal that results in differential fate acquisition in the multipotent trophectoderm leading to the formation of a tissue boundary within this tissue. The trophectoderm boundary becomes essential for expansion of the tissue into a multi-layered epithelium. Folding of this multi-layered trophectoderm induces spreading of the second extra-embryonic tissue, the primitive endoderm. Together, these events remodel the pre-implantation embryo into its post-implantation cylindrical shape. Our findings uncover how communication between embryonic and extra-embryonic tissues provides positional cues to drive shape changes in mammalian development during implantation.


Assuntos
Implantação do Embrião/fisiologia , Embrião de Mamíferos/embriologia , Camadas Germinativas/embriologia , Morfogênese/fisiologia , Trofoblastos/fisiologia , Animais , Embrião de Mamíferos/diagnóstico por imagem , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Camadas Germinativas/diagnóstico por imagem , Camadas Germinativas/metabolismo , Ligantes , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Trofoblastos/metabolismo
10.
Nat Cell Biol ; 20(12): 1434, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30451967

RESUMO

In the version of this Article originally published, the first name of author Guangdun Peng was spelled incorrectly as Guangdum. This has now been amended in all versions of the Article.

11.
Nat Cell Biol ; 20(11): 1278-1289, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30323188

RESUMO

The morphogenetic remodelling of embryo architecture after implantation culminates in pro-amniotic cavity formation. Despite its key importance, how this transformation occurs remains unknown. Here, we apply high-resolution imaging of embryos developing in vivo and in vitro, spatial RNA sequencing and 3D trophoblast stem cell models to determine the sequence and mechanisms of these remodelling events. We show that cavitation of the embryonic tissue is followed by folding of extra-embryonic tissue to mediate the formation of a second extra-embryonic cavity. Concomitantly, at the boundary between embryonic and extra-embryonic tissues, a hybrid 3D rosette forms. Resolution of this rosette enables the embryonic cavity to invade the extra-embryonic tissue. Subsequently, ß1-integrin signalling mediates the formation of multiple extra-embryonic 3D rosettes. Podocalyxin exocytosis leads to their polarized resolution, permitting the extension of embryonic and extra-embryonic cavities and their fusion into a unified pro-amniotic cavity. These morphogenetic transformations of embryogenesis reveal a previously unappreciated mechanism for lumen expansion and fusion.


Assuntos
Embrião de Mamíferos/embriologia , Morfogênese/genética , Células-Tronco/metabolismo , Trofoblastos/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos Transgênicos , Microscopia Confocal , Células-Tronco/citologia , Trofoblastos/citologia
13.
Nature ; 552(7684): 239-243, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29186120

RESUMO

The foundations of mammalian development lie in a cluster of embryonic epiblast stem cells. In response to extracellular matrix signalling, these cells undergo epithelialization and create an apical surface in contact with a cavity, a fundamental event for all subsequent development. Concomitantly, epiblast cells transit through distinct pluripotent states, before lineage commitment at gastrulation. These pluripotent states have been characterized at the molecular level, but their biological importance remains unclear. Here we show that exit from an unrestricted naive pluripotent state is required for epiblast epithelialization and generation of the pro-amniotic cavity in mouse embryos. Embryonic stem cells locked in the naive state are able to initiate polarization but fail to undergo lumenogenesis. Mechanistically, exit from naive pluripotency activates an Oct4-governed transcriptional program that results in expression of glycosylated sialomucin proteins and the vesicle tethering and fusion events of lumenogenesis. Similarly, exit of epiblasts from naive pluripotency in cultured human post-implantation embryos triggers amniotic cavity formation and developmental progression. Our results add tissue-level architecture as a new criterion for the characterization of different pluripotent states, and show the relevance of transitions between these states during development of the mammalian embryo.


Assuntos
Embrião de Mamíferos/citologia , Morfogênese , Células-Tronco Pluripotentes/citologia , Âmnio/citologia , Animais , Padronização Corporal , Colágeno , Combinação de Medicamentos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Glicosilação , Células-Tronco Embrionárias Humanas/citologia , Humanos , Laminina , Masculino , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Fator 3 de Transcrição de Octâmero/metabolismo , Proteoglicanas , Sialomucinas/metabolismo , Esferoides Celulares/citologia
14.
PLoS One ; 12(7): e0180659, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28715472

RESUMO

Remnants of ancient transposable elements (TEs) are abundant in mammalian genomes. These sequences contain multiple regulatory motifs and hence are capable of influencing expression of host genes. TEs are known to be released from epigenetic repression and can become transcriptionally active in cancer. Such activation could also lead to lineage-inappropriate activation of oncogenes, as previously described in lymphomas. However, there are few reports of this mechanism occurring in non-blood cancers. Here, we re-analyzed whole transcriptome data from a large cohort of patients with colon cancer, compared to matched normal colon control samples, to detect genes or transcripts ectopically expressed through activation of TE promoters. Among many such transcripts, we identified six where the affected gene has described role in cancer and where the TE-driven gene mRNA is expressed in primary colon cancer, but not normal matched tissue, and confirmed expression in colon cancer-derived cell lines. We further characterized a TE-gene chimeric transcript involving the Interleukin 33 (IL-33) gene (termed LTR-IL-33), that is ectopically expressed in a subset of colon cancer samples through the use of an endogenous retroviral long terminal repeat (LTR) promoter of the MSTD family. The LTR-IL-33 chimeric transcript encodes a novel shorter isoform of the protein, which is missing the initial N-terminus (including many conserved residues) of Native IL-33. In vitro studies showed that LTR-IL-33 expression is required for optimal CRC cell line growth as 3D colonospheres. Taken together, these data demonstrate the significance of TEs as regulators of aberrant gene expression in colon cancer.


Assuntos
Neoplasias Colorretais/patologia , Elementos de DNA Transponíveis/genética , Interleucina-33/genética , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-33/química , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Sequências Repetidas Terminais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA