Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Res Sq ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39149498

RESUMO

Juvenile myelomonocytic leukemia (JMML), a clonal hematologic malignancy, originates from mutated hematopoietic stem cells (HSCs). The mechanism sustaining the persistence of mutant stem cells, leading to leukemia development, remains elusive. In this study, we conducted comprehensive examination of gene expression profiles, transcriptional factor regulons, and cell compositions/interactions throughout various stages of tumor cell development in Ptpn11 mutation-associated JMML. Our analyses revealed that leukemia-initiating Ptpn11 E76K/+ mutant stem cells exhibited de novo activation of the myeloid transcriptional program and aberrant developmental trajectories. These mutant stem cells displayed significantly elevated expression of innate immunity-associated anti-microbial peptides and pro-inflammatory proteins, particularly S100a9 and S100a8. Biological experiments confirmed that S100a9/S100a8 conferred a selective advantage to the leukemia-initiating cells through autocrine effects and facilitated immune evasion by recruiting and promoting immune suppressive myeloid-derived suppressor cells (MDSCs) in the microenvironment. Importantly, pharmacological inhibition of S100a9/S100a8 signaling effectively impeded leukemia development from Ptpn11 E76K/+ mutant stem cells. These findings collectively suggest that JMML tumor-initiating cells exploit evolutionarily conserved innate immune and inflammatory mechanisms to establish clonal dominance.

2.
Oncol Rev ; 18: 1427497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39161560

RESUMO

Chromosome Region Maintenance 1 (CRM1), also known as Exportin 1 (XPO1), is a protein that is critical for transport of proteins and RNA to the cytoplasm through the nuclear pore complex. CRM1 inhibition with small molecule inhibitors is currently being studied in many cancers, including leukemias, solid organ malignancies and brain tumors. We review the structure of CRM1, its role in nuclear export, the current availability of CRM1 inhibitors, and the role of CRM1 in a number of distinct cellular processes. A deeper understanding of how CRM1 functions in nuclear export as well as other cellular processes may allow for the development of additional novel CRM1 inhibitors.

3.
Haematologica ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867582

RESUMO

Infants less than 1 year old diagnosed with KMT2A-rearranged (KMT2A-r) acute lymphoblastic leukemia (ALL) are at high risk of remission failure, relapse, and death due to leukemia, despite intensive therapies. Infant KMT2A-r ALL blasts are characterized by DNA hypermethylation. Epigenetic priming with DNA methyltransferase inhibitors increases the cytotoxicity of chemotherapy in preclinical studies. The Children's Oncology Group trial AALL15P1 tested the safety and tolerability of five days of azacitidine immediately prior to the start of chemotherapy on day six, in four post-induction chemotherapy courses for infants with newly diagnosed KMT2A-r ALL. The treatment was welltolerated, with only two of 31 evaluable patients (6.5%) experiencing dose-limiting toxicity. Whole genome bisulfite sequencing of peripheral blood mononuclear cells (PBMCs) demonstrated decreased DNA methylation in 87% of samples tested following five days of azacitidine. Event-free survival was similar to prior studies of newly diagnosed infant ALL. Azacitidine is safe and results in decreased DNA methylation of PBMCs in infants with KMT2A-r ALL, but the incorporation of azacitidine to enhance cytotoxicity did not impact survival. Clinicaltrials.gov identifier: NCT02828358.

4.
Proc Biol Sci ; 291(2021): 20240269, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628127

RESUMO

Biological networks are often modular. Explanations for this peculiarity either assume an adaptive advantage of a modular design such as higher robustness, or attribute it to neutral factors such as constraints underlying network assembly. Interestingly, most insights on the origin of modularity stem from models in which interactions are either determined by highly simplistic mechanisms, or have no mechanistic basis at all. Yet, empirical knowledge suggests that biological interactions are often mediated by complex structural or behavioural traits. Here, we investigate the origins of modularity using a model in which interactions are determined by potentially complex traits. Specifically, we model system elements-such as the species in an ecosystem-as finite-state machines (FSMs), and determine their interactions by means of communication between the corresponding FSMs. Using this model, we show that modularity probably emerges for free. We further find that the more modular an interaction network is, the less complex are the traits that mediate the interactions. Altogether, our results suggest that the conditions for modularity to evolve may be much broader than previously thought.


Assuntos
Algoritmos , Ecossistema
5.
JCPP Adv ; 4(1): e12203, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486957

RESUMO

Background: In this study we compare results obtained when applying the monozygotic twin difference cross-lagged panel model (MZD-CLPM) and a random intercept cross-lagged panel model (RI-CLPM) to the same data. Each of these models is designed to strengthen researchers' ability to draw causal inference from cross-lagged associations. We explore differences and similarities in how each model does this, and in the results each model produces. Specifically, we examine associations between maladaptive parenting and child emotional and behavioural problems in identical twins aged 9, 12 and 16. Method: Child reports of 5698 identical twins from the Twins Early Development Study (TEDS) were analysed. We ran a regular CLPM to anchor our findings within the current literature, then applied the MZD-CLPM and the RI-CLPM. Results: The RI-CLPM and MZD-CLPM each enable researchers to evaluate the direction of effects between correlated variables, after accounting for unmeasured sources of potential confounding. Our interpretation of these models therefore focusses primarily on the magnitude and significance of cross-lagged associations. In both the MZD-CLPM and the RI-CLPM behavioural problems at age 9 resulted in higher levels of maladaptive parenting at age 12. Other effects were not consistently significant across the two models, although the majority of estimates pointed in the same direction. Conclusion: In light of the triangulated methods, differences in the results obtained using the MZD-CLPM and the RI-CLPM underline the importance of careful consideration of what sources of unmeasured confounding different models control for and that nuance is required when interpreting findings using such models. We provide an overview of what the CLPM, RI-CLPM and MZD-CLPM can and cannot control for in this respect and the conclusions that can be drawn from each model.

6.
J Child Psychol Psychiatry ; 65(2): 176-187, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37571996

RESUMO

BACKGROUND: Low socioeconomic status (SES) is associated with increased risk for emotional and behavioural problems among children. Evidence from twin studies has shown that family SES moderates genetic and environmental influences on child mental health. However, it is also known that SES is itself under genetic influence and previous gene-environment interaction (G×E) studies have not incorporated the potential genetic overlap between child mental health and family SES into G×E analyses. We applied a novel approach using extended family data to investigate the moderation of aetiological influences on child emotional and behavioural problems by parental socioeconomic status in the presence of modelled gene-environment correlation. METHODS: The sample comprised >28,100 children in extended-family units drawn from the Norwegian Mother, Father and Child Cohort Study (MoBa). Mothers reported children's emotional and behavioural symptoms. Parents' income and educational attainment were obtained through linkage to administrative register data. Bivariate moderation Multiple-Children-of-Twins-and-Siblings (MCoTS) models were used to analyse relationships between offspring outcomes (emotional and behavioural symptom scores) and parental socioeconomic moderators (income rank and educational attainment). RESULTS: The aetiology of child emotional symptoms was moderated by maternal and paternal educational attainment. Shared environmental influences on child emotional symptoms were greater at lower levels of parents' education. The aetiology of child behavioural symptoms was moderated by maternal, but not paternal, socioeconomic factors. Genetic factors shared between maternal income and child behavioural symptoms were greater in families with lower levels maternal income. Nonshared environmental influences on child behavioural symptoms were greater in families with higher maternal income and education. CONCLUSIONS: Parental socioeconomic indicators moderated familial influences and nonshared environmental influences on child emotional and behavioural outcomes. Maternal SES and child mental health share aetiological overlap such that shared genetic influence was greater at the lower end of the socioeconomic distribution. Our findings collectively highlight the role that family socioeconomic factors play in shaping the origins of child emotional and behavioural problems.


Assuntos
Interação Gene-Ambiente , Mães , Feminino , Humanos , Masculino , Mães/psicologia , Estudos de Coortes , Família Estendida , Classe Social , Pai
7.
Genome Med ; 15(1): 83, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845689

RESUMO

BACKGROUND: Mixed phenotype acute leukemia (MPAL), a rare subgroup of leukemia characterized by blast cells with myeloid and lymphoid lineage features, is difficult to diagnose and treat. A better characterization of MPAL is essential to understand the subtype heterogeneity and how it compares with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). Therefore, we performed single-cell RNA sequencing (scRNAseq) on pediatric MPAL bone marrow (BM) samples to develop a granular map of the MPAL blasts and microenvironment landscape. METHODS: We analyzed over 40,000 cells from nine pediatric MPAL BM samples to generate a single-cell transcriptomic landscape of B/myeloid (B/My) and T/myeloid (T/My) MPAL. Cells were clustered using unsupervised single-cell methods, and malignant blast and immune clusters were annotated. Differential expression analysis was performed to identify B/My and T/My MPAL blast-specific signatures by comparing transcriptome profiles of MPAL with normal BM, AML, and ALL. Gene set enrichment analysis (GSEA) was performed, and significantly enriched pathways were compared in MPAL subtypes. RESULTS: B/My and T/My MPAL blasts displayed distinct blast signatures. Transcriptomic analysis revealed that B/My MPAL profile overlaps with B-ALL and AML samples. Similarly, T/My MPAL exhibited overlap with T-ALL and AML samples. Genes overexpressed in both MPAL subtypes' blast cells compared to AML, ALL, and healthy BM included MAP2K2 and CD81. Subtype-specific genes included HBEGF for B/My and PTEN for T/My. These marker sets segregated bulk RNA-seq AML, ALL, and MPAL samples based on expression profiles. Analysis comparing T/My MPAL to ETP, near-ETP, and non-ETP T-ALL, showed that T/My MPAL had greater overlap with ETP-ALL cases. Comparisons among MPAL subtypes between adult and pediatric samples showed analogous transcriptomic landscapes of corresponding subtypes. Transcriptomic differences were observed in the MPAL samples based on response to induction chemotherapy, including selective upregulation of the IL-16 pathway in relapsed samples. CONCLUSIONS: We have for the first time described the single-cell transcriptomic landscape of pediatric MPAL and demonstrated that B/My and T/My MPAL have distinct scRNAseq profiles from each other, AML, and ALL. Differences in transcriptomic profiles were seen based on response to therapy, but larger studies will be needed to validate these findings.


Assuntos
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Humanos , Criança , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Doença Aguda , Fenótipo , Análise de Sequência de RNA , Microambiente Tumoral
8.
Nat Commun ; 14(1): 6209, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798266

RESUMO

Acute myeloid leukemia (AML) microenvironment exhibits cellular and molecular differences among various subtypes. Here, we utilize single-cell RNA sequencing (scRNA-seq) to analyze pediatric AML bone marrow (BM) samples from diagnosis (Dx), end of induction (EOI), and relapse timepoints. Analysis of Dx, EOI scRNA-seq, and TARGET AML RNA-seq datasets reveals an AML blasts-associated 7-gene signature (CLEC11A, PRAME, AZU1, NREP, ARMH1, C1QBP, TRH), which we validate on independent datasets. The analysis reveals distinct clusters of Dx relapse- and continuous complete remission (CCR)-associated AML-blasts with differential expression of genes associated with survival. At Dx, relapse-associated samples have more exhausted T cells while CCR-associated samples have more inflammatory M1 macrophages. Post-therapy EOI residual blasts overexpress fatty acid oxidation, tumor growth, and stemness genes. Also, a post-therapy T-cell cluster associated with relapse samples exhibits downregulation of MHC Class I and T-cell regulatory genes. Altogether, this study deeply characterizes pediatric AML relapse- and CCR-associated samples to provide insights into the BM microenvironment landscape.


Assuntos
Leucemia Mieloide Aguda , Microambiente Tumoral , Humanos , Criança , Leucemia Mieloide Aguda/patologia , Indução de Remissão , Recidiva , Análise de Célula Única , Antígenos de Neoplasias , Proteínas de Transporte , Proteínas Mitocondriais/metabolismo
9.
BJPsych Open ; 9(5): e169, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37671545

RESUMO

BACKGROUND: Several longitudinal studies have cast doubt on the aetiological overlap between child and adult attention-deficit hyperactivity disorder (ADHD). However, a lack of genetically sensitive data following children across adulthood precludes direct evaluation of aetiological overlap between child and adult ADHD. AIMS: We circumvent the existing gap in longitudinal data by exploring genetic overlap between maternal (adult) and offspring (child) ADHD and comorbid symptoms in an extended family cohort. METHOD: Data were drawn from the Norwegian Mother, Father and Child Cohort Study, a Norwegian birth registry cohort of 114 500 children and their parents. Medical Birth Registry of Norway data were used to link extended families. Mothers self-reported their own ADHD symptoms when children were aged 3 years; reported children's ADHD symptoms at age 5 years; and children's ADHD, oppositional defiant disorder (ODD), conduct disorder, anxiety and depression symptoms at age 8 years. Genetic correlations were derived from Multiple-Children-of-Twins-and-Siblings and extended bivariate twin models. RESULTS: Phenotypic correlations between adult ADHD symptoms and child ADHD, ODD, conduct disorder, anxiety and depression symptoms at age 8 years were underpinned by medium-to-large genetic correlations (child ADHD: rG = 0.55, 95% CI 0.43-0.93; ODD: rG = 0.80, 95% CI 0.46-1; conduct disorder: rG = 0.44, 95% CI 0.28-1; anxiety: rG = 0.72, 95% CI 0.48-1; depression: rG = 1, 95% CI 0.66-1). These cross-generational adult-child genetic correlations were of a comparable magnitude to equivalent child-child genetic correlations with ADHD symptoms at age 5 years. CONCLUSIONS: Our findings provide genetically sensitive evidence that ADHD symptoms in adulthood share a common genetic architecture with symptoms of ADHD and four comorbid disorders at age 8 years. These findings suggest that in the majority of cases, ADHD symptoms in adulthood are not aetiologically distinct from in childhood.

10.
JCO Precis Oncol ; 6: e2100451, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35544730

RESUMO

PURPOSE: Profiling of pediatric cancers through deep sequencing of large gene panels and whole exomes is rapidly being adopted in many clinical settings. However, the most impactful approach to genomic profiling of pediatric cancers remains to be defined. METHODS: We conducted a prospective precision medicine trial, using whole-exome sequencing of tumor and germline tissue and whole-transcriptome sequencing (RNA Seq) of tumor tissue to characterize the mutational landscape of 127 tumors from 126 unique patients across the spectrum of pediatric brain tumors, hematologic malignancies, and extracranial solid tumors. RESULTS: We identified somatic tumor alterations in 121/127 (95.3%) tumor samples and identified cancer predisposition syndromes on the basis of known pathogenic or likely pathogenic germline mutations in cancer predisposition genes in 9/126 patients (7.1%). Additionally, we developed a novel scoring system for measuring the impact of tumor and germline sequencing, encompassing therapeutically relevant genomic alterations, cancer-related germline findings, recommendations for treatment, and refinement of risk stratification or prognosis. At least one impactful finding from the genomic results was identified in 108/127 (85%) samples sequenced. A recommendation to consider a targeted agent was provided for 82/126 (65.1%) patients. Twenty patients ultimately received therapy with a molecularly targeted agent, representing 24% of those who received a targeted agent recommendation and 16% of the total cohort. CONCLUSION: Paired tumor/normal whole-exome sequencing and tumor RNA Seq of de novo or relapsed/refractory tumors was feasible and clinically impactful in high-risk pediatric cancer patients.


Assuntos
Antineoplásicos , Neoplasias , Criança , Genômica/métodos , Mutação em Linhagem Germinativa/genética , Humanos , Neoplasias/tratamento farmacológico , Estudos Prospectivos , Sequenciamento do Exoma
11.
Front Microbiol ; 13: 842403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308356

RESUMO

Lactic acid bacteria (LAB) play a key role in many food fermentations. However, some LAB species can also cause food spoilage, e.g., through the formation of biogenic amines. Paucilactobacillus wasatchensis is a LAB that causes late gas production in Cheddar cheese, the molecular causes of which are not fully understood. This study reports on the ability of P. wasatchensis WDC04 to produce cadaverine and putrescine in broth supplemented with lysine and ornithine, as well as in a model cheese. The raclette-type semi-hard cheese produced with P. wasatchensis as an adjunct culture contained 1,085 mg kg-1 of cadaverine and 304 mg kg-1 of putrescine after 120 days of ripening. We identified two ornithine decarboxylase genes (odc) and a putrescine-ornithine antiporter gene (potE) in the genome sequence of P. wasatchensis. We could show that the two odc genes, which are located on two contigs, are contiguous and form the genetic cluster odc2-odc1-potE. Alignment searches showed that similar gene clusters exist in the genomes of Levilactobacillus paucivorans DSMZ22467, Lentilactobacillus kribbianus YH-lac9, Levilactobacillus hunanensis 151-2B, and Levilactobacillus lindianensis 220-4. More amino acid sequence comparisons showed that Odc1 and Odc2 shared 72 and 69% identity with a lysine and ornithine decarboxylase from Ligilactobacillus saerimneri 30a, respectively. To clarify the catalytic activities of both enzymes, the odc-coding genes were cloned and heterologously expressed as His-tagged fusion protein. The purified Odc1 protein decarboxylated lysine into cadaverine, while the recombinant Odc2 protein preferentially produced putrescine from ornithine but also exhibited low lysine decarboxylating activity. Both enzymes were active at pH of 5.5, a value often found in cheese. To our knowledge, this is only the second lysine decarboxylase in LAB whose function has been verified. The tandem arrangement of the genes in a single cluster suggests a gene duplication, evolving the ability to metabolize more amino. Divergent substrate preferences highlight the necessity of verifying the functions of genes, in addition to automatic annotation based on sequence similarity. Acquiring new biochemical data allows better predictive models and, in this case, more accurate biogenic amine production potential for LAB strains and microbiomes.

12.
Am Nat ; 199(3): 393-405, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35175893

RESUMO

AbstractMutualisms such as those between flowering plants and their pollinators are common in nature. Yet understanding their persistence in the face of cheaters and identifying the mechanisms behind their stunning diversity provide formidable challenges for evolutionary biologists. To shed light onto these questions, we introduce an individual-based model of two coevolving species in which individuals of one species use a Boolean circuit to discriminate between cooperators and cheaters in the other species. This conveys the idea that interactions are often mediated by complex biological processes rather than the matching of a single trait, as often assumed in models of coevolution. Our results show that cheating promotes diversification and complex discrimination mechanisms at the cost of a higher risk for mutualism to collapse. This result is mediated by an inverse relationship between mutational robustness and organismal complexity.


Assuntos
Magnoliopsida , Simbiose , Evolução Biológica , Humanos , Fenótipo
13.
BMC Microbiol ; 22(1): 48, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130830

RESUMO

BACKGROUND: Next-generation sequencing (NGS) methods and especially 16S rRNA gene amplicon sequencing have become indispensable tools in microbial ecology. While they have opened up new possibilities for studying microbial communities, they also have one drawback, namely providing only relative abundances and thus compositional data. Quantitative PCR (qPCR) has been used for years for the quantification of bacteria. However, this method requires the development of specific primers and has a low throughput. The constraint of low throughput has recently been overcome by the development of high-throughput qPCR (HT-qPCR), which allows for the simultaneous detection of the most prevalent bacteria in moderately complex systems, such as cheese and other fermented dairy foods. In the present study, the performance of the two approaches, NGS and HT-qPCR, was compared by analyzing the same DNA samples from 21 Raclette du Valais protected designation of origin (PDO) cheeses. Based on the results obtained, the differences, accuracy, and usefulness of the two approaches were studied in detail. RESULTS: The results obtained using NGS (non-targeted) and HT-qPCR (targeted) show considerable agreement in determining the microbial composition of the cheese DNA samples studied, albeit the fundamentally different nature of these two approaches. A few inconsistencies in species detection were observed, particularly for less abundant ones. The detailed comparison of the results for 15 bacterial species/groups measured by both methods revealed a considerable bias for certain bacterial species in the measurements of the amplicon sequencing approach. We identified as probable origin to this PCR bias due to primer mismatches, variations in the number of copies for the 16S rRNA gene, and bias introduced in the bioinformatics analysis. CONCLUSION: As the normalized microbial composition results of NGS and HT-qPCR agreed for most of the 21 cheese samples analyzed, both methods can be considered as complementary and reliable for studying the microbial composition of cheese. Their combined application proved to be very helpful in identifying potential biases and overcoming methodological limitations in the quantitative analysis of the cheese microbiota.


Assuntos
Bactérias/genética , Queijo/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microbiota/genética , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Bactérias/classificação , Bactérias/isolamento & purificação , Biologia Computacional , DNA Bacteriano/genética , Ensaios de Triagem em Larga Escala/métodos , Análise de Sequência de DNA
14.
J Clin Oncol ; 39(34): 3822-3828, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34591650

RESUMO

PURPOSE: The US Food and Drug Administration-expanded access program (EAP) uses a single patient use (SPU) mechanism to provide patient access to investigational agents in situations where no satisfactory or comparable therapy is available. Genomic profiling of de novo and relapsed or refractory childhood cancer has led to increased identification of new drug targets in the last decade. The aim of this study is to examine the SPU experience for genomically targeted therapies in patients with pediatric cancer. PATIENTS AND METHODS: All genomically targeted therapeutic SPUs obtained over a 5-year period were evaluated at four large pediatric cancer programs. Data were collected on the type of neoplasm, agents requested, corresponding molecularly informed targets, and clinical outcomes. RESULTS: A total of 45 SPUs in 44 patients were identified. Requests were predominantly made for CNS and solid tumors (84.4%) compared with hematologic malignancies (15.6%). Lack of an available clinical trial was the main reason for SPU initiation (64.4%). The median time from US Food and Drug Administration submission to approval was 3 days (range, 0-12 days) and from Institutional Review Board submission to approval was 5 days (range, 0-50 days). Objective tumor response was seen in 39.5% (15 of 38) of all evaluable SPUs. Disease progression was the primary reason for discontinuation of drug (66.7%) followed by toxicity (13.3%). CONCLUSION: SPU requests remain an important mechanism for pediatric access to genomically targeted agents given the limited availability of targeted clinical trials for children with high-risk neoplasms. Furthermore, this subset of SPUs resulted in a substantial number of objective tumor responses. The development of a multi-institutional data registry of SPUs may enable systematic review of toxicity and clinical outcomes and provide evidence-based access to new drugs in rare pediatric cancers.


Assuntos
Genômica/métodos , Neoplasias/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Adulto Jovem
15.
Chimia (Aarau) ; 75(6): 550, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34233824
16.
Molecules ; 26(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066129

RESUMO

Porphyrins are large organic molecules that are interesting for different applications, such as photovoltaic cells, gas sensors, or in catalysis. For many of these applications, the interactions between adsorbed molecules and surfaces play a crucial role. Studies of porphyrins on surfaces typically fall into one of two groups: (1) evaporation onto well-defined single-crystal surfaces under well-controlled ultrahigh vacuum conditions or (2) more application-oriented wet chemical deposition onto less well-defined high surface area surfaces under ambient conditions. In this study, we will investigate the wet chemical deposition of 5-(monocarboxyphenyl)-10,15,20-triphenylporphyrin (MCTPP) on well-defined rutile TiO2(110) single crystals under ambient conditions. Prior to deposition, the TiO2(110) crystals were also cleaned wet-chemically under ambient conditions, meaning none of the preparation steps were done in ultrahigh vacuum. However, after each preparation step, the surfaces were characterized in ultrahigh vacuum with X-ray photoelectron spectroscopy (XPS) and the result was compared with porphyrin layers prepared in ultrahigh vacuum (UHV) by evaporation. The differences of both preparations when exposed to zinc ion solutions will also be discussed.

18.
Clin Perinatol ; 48(1): xix-xx, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33583510
19.
Am J Hematol ; 96(2): 174-178, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33576528
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA