Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 110(7): 1123-1137, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37327787

RESUMO

Oculocutaneous albinism (OCA) is a rare disorder of pigment production. Affected individuals have variably decreased global pigmentation and visual-developmental changes that lead to low vision. OCA is notable for significant missing heritability, particularly among individuals with residual pigmentation. Tyrosinase (TYR) is the rate-limiting enzyme in melanin pigment biosynthesis and mutations that decrease enzyme function are one of the most common causes of OCA. We present the analysis of high-depth short-read TYR sequencing data for a cohort of 352 OCA probands, ∼50% of whom were previously sequenced without yielding a definitive diagnostic result. Our analysis identified 66 TYR single-nucleotide variants (SNVs) and small insertion/deletions (indels), 3 structural variants, and a rare haplotype comprised of two common frequency variants (p.Ser192Tyr and p.Arg402Gln) in cis-orientation, present in 149/352 OCA probands. We further describe a detailed analysis of the disease-causing haplotype, p.[Ser192Tyr; Arg402Gln] ("cis-YQ"). Haplotype analysis suggests that the cis-YQ allele arose by recombination and that multiple cis-YQ haplotypes are segregating in OCA-affected individuals and control populations. The cis-YQ allele is the most common disease-causing allele in our cohort, representing 19.1% (57/298) of TYR pathogenic alleles in individuals with type 1 (TYR-associated) OCA. Finally, among the 66 TYR variants, we found several additional alleles defined by a cis-oriented combination of minor, potentially hypomorph-producing alleles at common variant sites plus a second, rare pathogenic variant. Together, these results suggest that identification of phased variants for the full TYR locus are required for an exhaustive assessment for potentially disease-causing alleles.


Assuntos
Albinismo Oculocutâneo , Humanos , Haplótipos/genética , Albinismo Oculocutâneo/genética , Albinismo Oculocutâneo/diagnóstico , Mutação , Alelos
2.
Dis Model Mech ; 13(3)2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31996359

RESUMO

Niemann-Pick disease type C1 (NPC1) is a rare, fatal neurodegenerative disorder characterized by lysosomal accumulation of unesterified cholesterol and glycosphingolipids. These subcellular pathologies lead to phenotypes of hepatosplenomegaly, neurological degeneration and premature death. NPC1 is extremely heterogeneous in the timing of clinical presentation and is associated with a wide spectrum of causative NPC1 mutations. To study the genetic architecture of NPC1, we have generated a new NPC1 mouse model, Npc1em1PavNpc1em1Pav/em1Pav mutants showed notably reduced NPC1 protein compared to controls and displayed the pathological and biochemical hallmarks of NPC1. Interestingly, Npc1em1Pav/em1Pav mutants on a C57BL/6J genetic background showed more severe visceral pathology and a significantly shorter lifespan compared to Npc1em1Pav/em1Pav mutants on a BALB/cJ background, suggesting that strain-specific modifiers contribute to disease severity and survival. QTL analysis for lifespan of 202 backcross N2 mutants on a mixed C57BL/6J and BALB/cJ background detected significant linkage to markers on chromosomes 1 and 7. The discovery of these modifier regions demonstrates that mouse models are powerful tools for analyzing the genetics underlying rare human diseases, which can be used to improve understanding of the variability in NPC1 phenotypes and advance options for patient diagnosis and therapy.This article has an associated First Person interview with the first author of the paper.


Assuntos
Patrimônio Genético , Longevidade , Doença de Niemann-Pick Tipo C/patologia , Índice de Gravidade de Doença , Alelos , Animais , Sequência de Bases , Cromossomos de Mamíferos/genética , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisossomos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Degeneração Neural/patologia , Proteína C1 de Niemann-Pick , Fenótipo , Locos de Características Quantitativas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sobrevida , Vísceras/patologia , Redução de Peso
3.
Epigenetics Chromatin ; 12(1): 50, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399133

RESUMO

BACKGROUND: The MAPK/ERK signaling pathway is an essential regulator of numerous cell processes that are crucial for normal development as well as cancer progression. While much is known regarding MAPK/ERK signal conveyance from the cell membrane to the nucleus, the transcriptional and epigenetic mechanisms that govern gene expression downstream of MAPK signaling are not fully elucidated. RESULTS: This study employed an integrated epigenome analysis approach to interrogate the effects of MAPK/ERK pathway inhibition on the global transcriptome, the active chromatin landscape, and protein-DNA interactions in 501mel melanoma cells. Treatment of these cells with the small-molecule MEK inhibitor AZD6244 induces hyperpigmentation, widespread gene expression changes including alteration of genes linked to pigmentation, and extensive epigenomic reprogramming of transcriptionally distinct regulatory regions associated with the active chromatin mark H3K27ac. Regulatory regions with differentially acetylated H3K27ac regions following AZD6244 treatment are enriched in transcription factor binding motifs of ETV/ETS and ATF family members as well as the lineage-determining factors MITF and SOX10. H3K27ac-dense enhancer clusters known as super-enhancers show similar transcription factor motif enrichment, and furthermore, these super-enhancers are associated with genes encoding MITF, SOX10, and ETV/ETS proteins. Along with genome-wide resetting of the active enhancer landscape, MEK inhibition also results in widespread SOX10 recruitment throughout the genome, including increased SOX10 binding density at H3K27ac-marked enhancers. Importantly, these MEK inhibitor-responsive enhancers marked by H3K27ac and occupied by SOX10 are located near melanocyte lineage-specific and pigmentation genes and overlap numerous human SNPs associated with pigmentation and melanoma phenotypes, highlighting the variants located within these regions for prioritization in future studies. CONCLUSIONS: These results reveal the epigenetic reprogramming underlying the re-activation of melanocyte pigmentation and developmental transcriptional programs in 501mel cells in response to MEK inhibition and suggest extensive involvement of a MEK-SOX10 axis in the regulation of these processes. The dynamic chromatin changes identified here provide a rich genomic resource for further analyses of the molecular mechanisms governing the MAPK pathway in pigmentation- and melanocyte-associated diseases.


Assuntos
Cromatina/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Fatores de Transcrição SOXE/metabolismo , Benzimidazóis/farmacologia , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Código das Histonas , Histonas/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Melanoma/metabolismo , Melanoma/patologia , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Pigmentação/efeitos dos fármacos , Ligação Proteica , Proteínas Proto-Oncogênicas B-raf/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição SOXE/antagonistas & inibidores , Fatores de Transcrição SOXE/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA