Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
1.
Nature ; 633(8028): 127-136, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39112709

RESUMO

Colorectal carcinoma (CRC) is a common cause of mortality1, but a comprehensive description of its genomic landscape is lacking2-9. Here we perform whole-genome sequencing of 2,023 CRC samples from participants in the UK 100,000 Genomes Project, thereby providing a highly detailed somatic mutational landscape of this cancer. Integrated analyses identify more than 250 putative CRC driver genes, many not previously implicated in CRC or other cancers, including several recurrent changes outside the coding genome. We extend the molecular pathways involved in CRC development, define four new common subgroups of microsatellite-stable CRC based on genomic features and show that these groups have independent prognostic associations. We also characterize several rare molecular CRC subgroups, some with potential clinical relevance, including cancers with both microsatellite and chromosomal instability. We demonstrate a spectrum of mutational profiles across the colorectum, which reflect aetiological differences. These include the role of Escherichia colipks+ colibactin in rectal cancers10 and the importance of the SBS93 signature11-13, which suggests that diet or smoking is a risk factor. Immune-escape driver mutations14 are near-ubiquitous in hypermutant tumours and occur in about half of microsatellite-stable CRCs, often in the form of HLA copy number changes. Many driver mutations are actionable, including those associated with rare subgroups (for example, BRCA1 and IDH1), highlighting the role of whole-genome sequencing in optimizing patient care.


Assuntos
Neoplasias Colorretais , Genômica , Mutação , Humanos , Neoplasias Colorretais/genética , Feminino , Masculino , Instabilidade de Microssatélites , Sequenciamento Completo do Genoma , Prognóstico , Reino Unido/epidemiologia , Instabilidade Cromossômica/genética , Genoma Humano/genética , Variações do Número de Cópias de DNA/genética , Antígenos HLA/genética
2.
Res Sq ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38978580

RESUMO

Kataegis, the focal hypermutation of single base substitutions (SBS) in tumour genomes, has received little attention with respect to prostate cancer (PCa) associated molecular and clinical features. Most notably, data is lacking with regards to this tumour evolutionary phenomenon and PCa racial disparities, with African men disproportionately impacted. Here through comparison between African (n = 109) and non-African (n = 79) whole genome sequenced treatment naïve primary tumours, using a single analytical workflow we assessed for shared and unique features of kataegis. Linking kataegis to aggressive presentation, structural variant burden and copy number loss, we attributed APOBEC3 activity through higher rates of SBS2 to high-risk African tumours. While kataegis positive African patients presented with elevated prostate specific antigen levels, their tumours showed evolutionary unique trajectories marked by increased subclonal and structural variant-independent kataegis. The potential to exacerbate tumour heterogeneity emphases the significance of continued exploration of biological behaviours and environmental exposures for African patients.

3.
Nat Commun ; 15(1): 5935, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39009593

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common form of kidney cancer, but a comprehensive description of its genomic landscape is lacking. We report the whole genome sequencing of 778 ccRCC patients enrolled in the 100,000 Genomes Project, providing for a detailed description of the somatic mutational landscape of ccRCC. We identify candidate driver genes, which as well as emphasising the major role of epigenetic regulation in ccRCC highlight additional biological pathways extending opportunities for therapeutic interventions. Genomic characterisation identified patients with divergent clinical outcome; higher number of structural copy number alterations associated with poorer prognosis, whereas VHL mutations were independently associated with a better prognosis. The observations that higher T-cell infiltration is associated with better overall survival and that genetically predicted immune evasion is not common supports the rationale for immunotherapy. These findings should inform personalised surveillance and treatment strategies for ccRCC patients.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Mutação , Proteína Supressora de Tumor Von Hippel-Lindau , Sequenciamento Completo do Genoma , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/terapia , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/patologia , Humanos , Neoplasias Renais/genética , Neoplasias Renais/terapia , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Prognóstico , Masculino , Feminino , Variações do Número de Cópias de DNA , Pessoa de Meia-Idade , Epigênese Genética , Idoso , Regulação Neoplásica da Expressão Gênica , Imunoterapia/métodos
4.
Nat Genet ; 56(9): 1868-1877, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38890488

RESUMO

Tumor genomic profiling is increasingly seen as a prerequisite to guide the treatment of patients with cancer. To explore the value of whole-genome sequencing (WGS) in broadening the scope of cancers potentially amenable to a precision therapy, we analysed whole-genome sequencing data on 10,478 patients spanning 35 cancer types recruited to the UK 100,000 Genomes Project. We identified 330 candidate driver genes, including 74 that are new to any cancer. We estimate that approximately 55% of patients studied harbor at least one clinically relevant mutation, predicting either sensitivity or resistance to certain treatments or clinical trial eligibility. By performing computational chemogenomic analysis of cancer mutations we identify additional targets for compounds that represent attractive candidates for future clinical trials. This study represents one of the most comprehensive efforts thus far to identify cancer driver genes in the real world setting and assess their impact on informing precision oncology.


Assuntos
Mutação , Neoplasias , Medicina de Precisão , Sequenciamento Completo do Genoma , Humanos , Neoplasias/genética , Medicina de Precisão/métodos , Genoma Humano , Genômica/métodos , Oncologia/métodos
5.
Nat Biotechnol ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862616

RESUMO

Subclonal reconstruction algorithms use bulk DNA sequencing data to quantify parameters of tumor evolution, allowing an assessment of how cancers initiate, progress and respond to selective pressures. We launched the ICGC-TCGA (International Cancer Genome Consortium-The Cancer Genome Atlas) DREAM Somatic Mutation Calling Tumor Heterogeneity and Evolution Challenge to benchmark existing subclonal reconstruction algorithms. This 7-year community effort used cloud computing to benchmark 31 subclonal reconstruction algorithms on 51 simulated tumors. Algorithms were scored on seven independent tasks, leading to 12,061 total runs. Algorithm choice influenced performance substantially more than tumor features but purity-adjusted read depth, copy-number state and read mappability were associated with the performance of most algorithms on most tasks. No single algorithm was a top performer for all seven tasks and existing ensemble strategies were unable to outperform the best individual methods, highlighting a key research need. All containerized methods, evaluation code and datasets are available to support further assessment of the determinants of subclonal reconstruction accuracy and development of improved methods to understand tumor evolution.

6.
Sci Adv ; 10(20): eadj3301, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758780

RESUMO

Myeloid cells are highly prevalent in glioblastoma (GBM), existing in a spectrum of phenotypic and activation states. We now have limited knowledge of the tumor microenvironment (TME) determinants that influence the localization and the functions of the diverse myeloid cell populations in GBM. Here, we have utilized orthogonal imaging mass cytometry with single-cell and spatial transcriptomic approaches to identify and map the various myeloid populations in the human GBM tumor microenvironment (TME). Our results show that different myeloid populations have distinct and reproducible compartmentalization patterns in the GBM TME that is driven by tissue hypoxia, regional chemokine signaling, and varied homotypic and heterotypic cellular interactions. We subsequently identified specific tumor subregions in GBM, based on composition of identified myeloid cell populations, that were linked to patient survival. Our results provide insight into the spatial organization of myeloid cell subpopulations in GBM, and how this is predictive of clinical outcome.


Assuntos
Glioblastoma , Células Mieloides , Microambiente Tumoral , Glioblastoma/patologia , Glioblastoma/metabolismo , Humanos , Células Mieloides/metabolismo , Células Mieloides/patologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Análise de Célula Única , Hipóxia/metabolismo , Perfilação da Expressão Gênica
7.
medRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798417

RESUMO

Lung cancer in never smokers (LCINS) accounts for up to 25% of all lung cancers and has been associated with exposure to secondhand tobacco smoke and air pollution in observational studies. Here, we evaluate the mutagenic exposures in LCINS by examining deep whole-genome sequencing data from a large international cohort of 871 treatment-naïve LCINS recruited from 28 geographical locations within the Sherlock-Lung study. KRAS mutations were 3.8-fold more common in adenocarcinomas of never smokers from North America and Europe, while a 1.6-fold higher prevalence of EGFR and TP53 mutations was observed in adenocarcinomas from East Asia. Signature SBS40a, with unknown cause, was found in most samples and accounted for the largest proportion of single base substitutions in adenocarcinomas, being enriched in EGFR-mutated cases. Conversely, the aristolochic acid signature SBS22a was almost exclusively observed in patients from Taipei. Even though LCINS exposed to secondhand smoke had an 8.3% higher mutational burden and 5.4% shorter telomeres, passive smoking was not associated with driver mutations in cancer driver genes or the activities of individual mutational signatures. In contrast, patients from regions with high levels of air pollution were more likely to have TP53 mutations while exhibiting shorter telomeres and an increase in most types of somatic mutations, including a 3.9-fold elevation of signature SBS4 (q-value=3.1 × 10-5), previously linked mainly to tobacco smoking, and a 76% increase of clock-like signature SBS5 (q-value=5.0 × 10-5). A positive dose-response effect was observed with air pollution levels, which correlated with both a decrease in telomere length and an elevation in somatic mutations, notably attributed to signatures SBS4 and SBS5. Our results elucidate the diversity of mutational processes shaping the genomic landscape of lung cancer in never smokers.

8.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617360

RESUMO

APOBEC enzymes are part of the innate immunity and are responsible for restricting viruses and retroelements by deaminating cytosine residues1,2. Most solid tumors harbor different levels of somatic mutations attributed to the off-target activities of APOBEC3A (A3A) and/or APOBEC3B (A3B)3-6. However, how APOBEC3A/B enzymes shape the tumor evolution in the presence of exogenous mutagenic processes is largely unknown. Here, by combining deep whole-genome sequencing with multi-omics profiling of 309 lung cancers from smokers with detailed tobacco smoking information, we identify two subtypes defined by low (LAS) and high (HAS) APOBEC mutagenesis. LAS are enriched for A3B-like mutagenesis and KRAS mutations, whereas HAS for A3A-like mutagenesis and TP53 mutations. Unlike APOBEC3A, APOBEC3B expression is strongly associated with an upregulation of the base excision repair pathway. Hypermutation by unrepaired A3A and tobacco smoking mutagenesis combined with TP53-induced genomic instability can trigger senescence7, apoptosis8, and cell regeneration9, as indicated by high expression of pulmonary healing signaling pathway, stemness markers and distal cell-of-origin in HAS. The expected association of tobacco smoking variables (e.g., time to first cigarette) with genomic/epigenomic changes are not observed in HAS, a plausible consequence of frequent cell senescence or apoptosis. HAS have more neoantigens, slower clonal expansion, and older age at onset compared to LAS, particularly in heavy smokers, consistent with high proportions of newly generated, unmutated cells and frequent immuno-editing. These findings show how heterogeneity in mutational burden across co-occurring mutational processes and cell types contributes to tumor development, with important clinical implications.

9.
Bioinformatics ; 40(6)2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38656989

RESUMO

MOTIVATION: Few methods exist for timing individual amplification events in regions of focal amplification. Current methods are also limited in the copy number states that they are able to time. Here we introduce AmplificationTimeR, a method for timing higher level copy number gains and inferring the most parsimonious order of events for regions that have undergone both single gains and whole genome duplication. Our method is an extension of established approaches for timing genomic gains. RESULTS: We can time more copy number states, and in states covered by other methods our results are comparable to previously published methods. AVAILABILITY AND IMPLEMENTATION: AmplificationTimer is freely available as an R package hosted at https://github.com/Wedge-lab/AmplificationTimeR.


Assuntos
Software , Genômica/métodos , Algoritmos , Humanos , Variações do Número de Cópias de DNA
10.
Cell Genom ; 4(3): 100511, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38428419

RESUMO

The development of cancer is an evolutionary process involving the sequential acquisition of genetic alterations that disrupt normal biological processes, enabling tumor cells to rapidly proliferate and eventually invade and metastasize to other tissues. We investigated the genomic evolution of prostate cancer through the application of three separate classification methods, each designed to investigate a different aspect of tumor evolution. Integrating the results revealed the existence of two distinct types of prostate cancer that arise from divergent evolutionary trajectories, designated as the Canonical and Alternative evolutionary disease types. We therefore propose the evotype model for prostate cancer evolution wherein Alternative-evotype tumors diverge from those of the Canonical-evotype through the stochastic accumulation of genetic alterations associated with disruptions to androgen receptor DNA binding. Our model unifies many previous molecular observations, providing a powerful new framework to investigate prostate cancer disease progression.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Próstata/metabolismo , Mutação , Genômica , Evolução Molecular
12.
Genome Med ; 16(1): 35, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374116

RESUMO

BACKGROUND: Extension of prostate cancer beyond the primary site by local invasion or nodal metastasis is associated with poor prognosis. Despite significant research on tumour evolution in prostate cancer metastasis, the emergence and evolution of cancer clones at this early stage of expansion and spread are poorly understood. We aimed to delineate the routes of evolution and cancer spread within the prostate and to seminal vesicles and lymph nodes, linking these to histological features that are used in diagnostic risk stratification. METHODS: We performed whole-genome sequencing on 42 prostate cancer samples from the prostate, seminal vesicles and lymph nodes of five treatment-naive patients with locally advanced disease. We spatially mapped the clonal composition of cancer across the prostate and the routes of spread of cancer cells within the prostate and to seminal vesicles and lymph nodes in each individual by analysing a total of > 19,000 copy number corrected single nucleotide variants. RESULTS: In each patient, we identified sample locations corresponding to the earliest part of the malignancy. In patient 10, we mapped the spread of cancer from the apex of the prostate to the seminal vesicles and identified specific genomic changes associated with the transformation of adenocarcinoma to amphicrine morphology during this spread. Furthermore, we show that the lymph node metastases in this patient arose from specific cancer clones found at the base of the prostate and the seminal vesicles. In patient 15, we observed increased mutational burden, altered mutational signatures and histological changes associated with whole genome duplication. In all patients in whom histological heterogeneity was observed (4/5), we found that the distinct morphologies were located on separate branches of their respective evolutionary trees. CONCLUSIONS: Our results link histological transformation with specific genomic alterations and phylogenetic branching. These findings have implications for diagnosis and risk stratification, in addition to providing a rationale for further studies to characterise the genetic changes causally linked to morphological transformation. Our study demonstrates the value of integrating multi-region sequencing with histopathological data to understand tumour evolution and identify mechanisms of prostate cancer spread.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Filogenia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Próstata/patologia , Metástase Linfática/patologia , Glândulas Seminais/patologia
13.
Res Sq ; 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38106039

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common form of kidney cancer, but a comprehensive description of its genomic landscape is lacking. We report the whole genome sequencing of 778 ccRCC patients enrolled in the 100,000 Genomes Project, providing the most detailed somatic mutational landscape to date. We identify new driver genes, which as well as emphasising the major role of epigenetic regulation in ccRCC highlight additional biological pathways extending opportunities for drug repurposing. Genomic characterisation identified patients with divergent clinical outcome; higher number of structural copy number alterations associated with poorer prognosis, whereas VHL mutations were independently associated with a better prognosis. The twin observations that higher T-cell infiltration is associated with better outcome and that genetically predicted immune evasion is not common supports the rationale for immunotherapy. These findings should inform personalised surveillance and treatment strategies for ccRCC patients.

14.
Genome Med ; 15(1): 82, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828555

RESUMO

BACKGROUND: Prostate cancer (PrCa) genomic heterogeneity causes resistance to therapies such as androgen deprivation. Such heterogeneity can be deciphered in the context of evolutionary principles, but current clinical trials do not include evolution as an essential feature. Whether or not analysis of genomic data in an evolutionary context in primary prostate cancer can provide unique added value in the research and clinical domains remains an open question. METHODS: We used novel processing techniques to obtain whole genome data together with 3D anatomic and histomorphologic analysis in two men (GP5 and GP12) with high-risk PrCa undergoing radical prostatectomy. A total of 22 whole genome-sequenced sites (16 primary cancer foci and 6 lymph node metastatic) were analyzed using evolutionary reconstruction tools and spatio-evolutionary models. Probability models were used to trace spatial and chronological origins of the primary tumor and metastases, chart their genetic drivers, and distinguish metastatic and non-metastatic subclones. RESULTS: In patient GP5, CDK12 inactivation was among the first mutations, leading to a PrCa tandem duplicator phenotype and initiating the cancer around age 50, followed by rapid cancer evolution after age 57, and metastasis around age 59, 5 years prior to prostatectomy. In patient GP12, accelerated cancer progression was detected after age 54, and metastasis occurred around age 56, 3 years prior to prostatectomy. Multiple metastasis-originating events were identified in each patient and tracked anatomically. Metastasis from prostate to lymph nodes occurred strictly ipsilaterally in all 12 detected events. In this pilot, metastatic subclone content analysis appears to substantially enhance the identification of key drivers. Evolutionary analysis' potential impact on therapy selection appears positive in these pilot cases. CONCLUSIONS: PrCa evolutionary analysis allows tracking of anatomic site of origin, timing of cancer origin and spread, and distinction of metastatic-capable from non-metastatic subclones. This enables better identification of actionable targets for therapy. If extended to larger cohorts, it appears likely that similar analyses could add substantial biological insight and clinically relevant value.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Pessoa de Meia-Idade , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Neoplasias da Próstata/patologia , Antagonistas de Androgênios/uso terapêutico , Medicina de Precisão , Prostatectomia/métodos , Oncogenes
16.
Cancer Res Commun ; 3(2): 281-296, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36860655

RESUMO

The hallmark signatures based on gene expression capture core cancer processes. Through a pan-cancer analysis, we describe the overview of hallmark signatures across tumor types/subtypes and reveal significant relationships between these signatures and genetic alterations. TP53 mutation exerts diverse changes, including increased proliferation and glycolysis, which are closely mimicked by widespread copy-number alterations. Hallmark signature and copy-number clustering identify a cluster of squamous tumors and basal-like breast and bladder cancers with elevated proliferation signatures, frequent TP53 mutation, and high aneuploidy. In these basal-like/squamous TP53-mutated tumors, a specific and consistent spectrum of copy-number alterations is preferentially selected prior to whole-genome duplication. Within Trp53-null breast cancer mouse models, these copy-number alterations spontaneously occur and recapitulate the hallmark signature changes observed in the human condition. Together, our analysis reveals intertumor and intratumor heterogeneity of the hallmark signatures, uncovering an oncogenic program induced by TP53 mutation and select aneuploidy events to drive a worsened prognosis. Significance: Our data demonstrate that TP53 mutation and a resultant selected pattern of aneuploidies cause an aggressive transcriptional program including upregulation of glycolysis signature with prognostic implications. Importantly, basal-like breast cancer demonstrates genetic and/or phenotypic changes closely related to squamous tumors including 5q deletion that reveal alterations that could offer therapeutic options across tumor types regardless of tissue of origin.


Assuntos
Neoplasias da Mama , Carcinoma de Células Escamosas , Humanos , Camundongos , Animais , Feminino , Proteína Supressora de Tumor p53/genética , Mutação/genética , Neoplasias da Mama/genética , Aneuploidia
19.
Cell Genom ; 2(11): None, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36388765

RESUMO

Mutational signature analysis is commonly performed in cancer genomic studies. Here, we present SigProfilerExtractor, an automated tool for de novo extraction of mutational signatures, and benchmark it against another 13 bioinformatics tools by using 34 scenarios encompassing 2,500 simulated signatures found in 60,000 synthetic genomes and 20,000 synthetic exomes. For simulations with 5% noise, reflecting high-quality datasets, SigProfilerExtractor outperforms other approaches by elucidating between 20% and 50% more true-positive signatures while yielding 5-fold less false-positive signatures. Applying SigProfilerExtractor to 4,643 whole-genome- and 19,184 whole-exome-sequenced cancers reveals four novel signatures. Two of the signatures are confirmed in independent cohorts, and one of these signatures is associated with tobacco smoking. In summary, this report provides a reference tool for analysis of mutational signatures, a comprehensive benchmarking of bioinformatics tools for extracting signatures, and several novel mutational signatures, including one putatively attributed to direct tobacco smoking mutagenesis in bladder tissues.

20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3063-3067, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085678

RESUMO

Multiplexed immunofluorescence provides an un-precedented opportunity for studying specific cell-to-cell and cell microenvironment interactions. We employ graph neural networks to combine features obtained from tissue morphology with measurements of protein expression to profile the tumour microenvironment associated with different tumour stages. Our framework presents a new approach to analysing and processing these complex multi-dimensional datasets that overcomes some of the key challenges in analysing these data and opens up the opportunity to abstract biologically meaningful interactions.


Assuntos
Comunicação Celular , Redes Neurais de Computação , Coloração e Rotulagem , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA