Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 243(3): 881-893, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38840520

RESUMO

Differences in demographic and environmental niches facilitate plant species coexistence in tropical forests. However, the adaptations that enable species to achieve higher demographic rates (e.g. growth or survival) or occupy unique environmental niches (e.g. waterlogged conditions) remain poorly understood. Anatomical traits may better predict plant environmental and demographic strategies because they are direct measurements of structures involved in these adaptations. We collected 18 leaf and twig traits from 29 tree species in a tropical freshwater swamp forest in Singapore. We estimated demographic parameters of the 29 species from growth and survival models, and degree of association toward swamp habitats. We examined pairwise trait-trait, trait-demography and trait-environment links while controlling for phylogeny. Leaf and twig anatomical traits were better predictors of all demographic parameters than other commonly measured leaf and wood traits. Plants with wider vessels had faster growth rates but lower survival rates. Leaf and spongy mesophyll thickness predicted swamp association. These findings demonstrate the utility of anatomical traits as indicators of plant hydraulic strategies and their links to growth-mortality trade-offs and waterlogging stress tolerance that underlie species coexistence mechanisms in tropical forest trees.


Assuntos
Adaptação Fisiológica , Florestas , Folhas de Planta , Árvores , Clima Tropical , Áreas Alagadas , Folhas de Planta/fisiologia , Folhas de Planta/anatomia & histologia , Árvores/fisiologia , Característica Quantitativa Herdável , Água Doce , Ecossistema , Especificidade da Espécie
2.
Sci Rep ; 11(1): 14874, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290296

RESUMO

The demersal brown banded bamboo shark Chiloscyllium punctatum is a major component of sharks landed in Malaysia. However, little is known about their population structure and the effect of high fishing pressure on these weak swimming sharks. Both mitochondrial DNA control region (1072 bp) and NADH dehydrogenase subunit 2 (1044 bp) were used to elucidate the genetic structure and connectivity of C. punctatum among five major areas within the Sundaland region. Our findings revealed (i) strong genetic structure with little present day mixing between the major areas, (ii) high intra-population genetic diversity with unique haplotypes, (iii) significant correlation between genetic differentiation and geographical distance coupled with detectable presence of fine scale geographical barriers (i.e. the South China Sea), (iv) historical directional gene flow from the east coast of Peninsular Malaysia towards the west coast and Borneo, and (v) no detectable genetic differentiation along the coastline of east Peninsular Malaysia. Genetic patterns inferred from the mitochondrial DNA loci were consistent with the strong coastal shelf association in this species, the presence of contemporary barriers shaped by benthic features, and limited current-driven egg dispersal. Fine scale population structure of C. punctatum highlights the need to improve genetic understanding for fishery management and conservation of other small-sized sharks.


Assuntos
Variação Genética/genética , Genética Populacional , Água do Mar , Tubarões/genética , Animais , Bornéu , China , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Ecossistema , Fluxo Gênico , Estruturas Genéticas , Geografia , Malásia , NADH Desidrogenase/genética
3.
Mitochondrial DNA B Resour ; 3(2): 500-502, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33474220

RESUMO

Sonneratia alba Sm. is one of the most widely distributed mangrove species worldwide. In this study, the whole chloroplast genome of S. alba was assembled for the first time not only in Sonneratia, but also for a member of the mangrove plant community. The total chloroplast genome was 153,061 bp in length, with a large single copy (LSC) region of 87,226 bp and a small single copy (SSC) region of 18,033 bp, separated by two inverted repeats (IRs) regions of 23,901 bp. The overall GC content was 37.3%, and 43.1%, 35.4%, and 31.1% in the IRs, LSC, and SSC regions, respectively. It contained 106 genes, including 79 coding genes, 24 tRNA genes, and four rRNA genes. A phylogenetic analysis confirmed that S. alba was clustered with Trapa maximowiczii within the family Lythraceae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA